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Preface

As in 2006 and 2007, the "Computational Biology and Biophgsgroup of the John von
Neumann Institute for Computing (NIC) organized in 2008iagavorkshop “From Com-
putational Biophysics to Systems Biology” (CBSB08). Reskars and students from
all over the world met from May 19th to May 21st, 2008 at the &a&sh Centre Jilich
and discussed physics-based approaches to systems bidlagincreasing importance of
computing in Biology, Medicine and other life science carsben already by the number
of participants which increased from 70 (CBSBO06) to 150 (BB8) in only three years.
As in the previous year, the participants explored in sdiergresentations and numerous
informal discussions a wide range of topics ranging fronglgirmacromolecules to the
working of entire cells. This proceeding volume collectiested presentations from the
3-day long workshop that may serve as starting point fohrtliscussions. It is divided
into articles by invited speakers and such originally pnése as posters or in contributed
talks, as the interdisciplinary nature of the articles oftiefies a simple classification ac-
cording to subject areas.

Besides the editors, Helga Frank, Erika Wittig and Martirazarios helped organize the
workshop. We also wish to thank IBM (Germany) for generoyspsuit.

Julich, June 2008

U. H. E. Hansmann, J. H. Meinke, S. Mohanty, W. Nadler, O. Zanmann
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Strategies to Overcome the Induced Fit Effects in
Molecular Docking

Irina Kufareva and Ruben Abagyan

The Scripps Research Institute, La Jolla, CA 93037, USA
E-mail: {kufareva, abagyay@scripps.edu

Protein flexibility and induced fit effects present a majostalsle to the development of bet-
ter molecular docking algorithms and scoring functions.redHee present several modeling
and sampling strategies to generate high quality ligaddded receptor conformations. We
demonstrate that the repulsive-density approach, thenalaeanning (SCARE) algorithm, and
the ligand-guided receptor modeling significantly imprdve ligand pose prediction, de novo
inhibitor finding via virtual screening, and ligand profiimesults.

1 Introduction

Recent years have been characterized by great advancasobfisil proteomics and expo-
nential growth of the number of newly solved protein struetu However, these structures
still represent only a small fraction of therapeuticalljex@nt proteome, with other pro-
teins only accessible in the form of approximate homologylel®. Moreover, as static
shapshots of protein dynamic flexibility, they are often futly compatible with ligands
of interest. Ligand docking, screening and profiling efanvariably fail in such cases.

General structure prediction methods of molecular dynamiimulations partially ad-
dress the problem, however, they are still incapable oftifiémg a reasonably small set
of dockable and screenable ligand binding pocket confdaomst Alternatively, concur-
rent pocket/ligand global optimization can provide an exdtize solution to the problem,
however, it is impractical due to time and resource requingist A reasonable alternative
is the so-called mutiple receptor conformation (MRC) dagki In this approach, the pro-
tein flexibility is represented by a series of rigid snapshdtor the best experimentally
explored cases, experimental snaphots (e.g. multipleatlygraphic structures or NMR
ensembles) can be used as input for the MRC docking.

In the absence of mutiple experimental structuads,initio or ligand-guided simu-
lations are needed to computationally generate an enseamhlbéceptor conformations.
Available approaches to this task include molecular dycarte.g. Eyrisch and Helrfis
normal mode analysis (e.g. Cavasotto, Kovacs and Ab&yyand internal coordinate
sampling (e.g. Abagyan and Tot)v All these methods, however, tend to produce far
too many models, most of them inappropriate for ligand dogkiue to insuficient volume
and shape of the binding pocket. Furthermore, the large Bumbpocket conformers
tends to decrease, rather than increase, the number opfad#e/es in both pose predic-
tion and compound scoring and screening. In addition tigelaonformational ensembles
quickly become overwhelming for docking algorithms. THere, it is important to either
compress the generated conformational ensemble or nelsghéct its most informative
representatives.

We here present several modeling and sampling strategigerterate high quality
ligand-induced receptor conformations. The first of theloved generation of more drug-



gable pocket models by introducing a pocket controllingickin the form of repulsive
density. This method and its successful application togindtinase CK2 are described in
Section 2. In some cases, while a major fraction of a cryagadihic or generated pocket
very closely resembles its bound conformation, the strattearangements in the remain-
ing fraction creates steric hindrances with the ligand aa#les it impossible to reproduce
the correct ligand binding geometry. In such cases, contipatd removal of the incor-
rectly placed elements provides a partially correct/pHytiempty pocket with sufficient
number of native contacts for the ligand to dock in the nedive pose. The common
wisdom underlying this approach is “better no atom than angratom”. This aproach
was successfully implemented in tB€an Alanines and REfif8 CARE) flexible recep-
tor docking algorithm presented in Section 3. Computatieraision, rather than mod-
eling, of structural elements of the receptor is also beiaiic cases where ligands bind
to pockets previously occupied by these elements. The lgeddgipe Il inhibitors of pro-
tein kinases form a well-studied family of such interactiom Section 3, we also present
DOLPHIN (Deletion Of Loop from PHe-INkinase models as powerful devices for ligand
development, screening, and activity profiling.

Known strong small molecule binders to the protein of indeoan provide a valuable
information for both generation and selection of receptmiet conformations in MRC
docking, and help reduce the complexity and dimensionafithe problem. One way to
employ this information is a so-called ligand-guided rgoegelection, where among the
mupltiple conformations, only those are chosen for scragtiat are selective towards
known ligands. An overview of several successful applaragiof this strategy is described
in Section 4.

Overall, the described approaches to the MRC generatiorsaledtion, along with
proper methods of ligand docking and scoring, represeneatgrdvance in the field of
induced fit docking.

2 Ab Initio Pocket Ensemble Generation

A common drawback of simulation methods is the large numbgenerated models, with
only a small fraction of them being compatible with ligandding. Clearly, there is a need
in computational techniques that can successfully guidsithulation procedures towards
more druggable pockets. Experimental information in threnfof known ligands targeting
the pocket and their activities may be of great help. Howelegrde novopockets such
information is not available. We developed a computatigmatocol that addresses this
problem by introducing a repulsive density in the pocketramédependent energy/penalty
term. Such density represents a generic ligand and pretensamulation procedure from
generating conformations in which elements of the strectinilapse inside the pocket.
The algorithm of density generation includes the followsteps:

1. Identification of residues whose sidechains form the pbck
2. Simultaneous conversion of these residues to Ala.

3. Construction of atom density grid map for the obtainedgin
4

. Repeated spatial averaging of the map in order to obtamaothed density cloud
filling the cavities of the original protein.



Figure 1. Repulsive density blob represents a genericdigand guides side-chain sampling procedure towards
more open pocket conformations. (a) - Initial closed pockeiformation, (b) - pocket sidechain alanine mutation
and density generation, (c) - resulting open pocket corddion.

5. Taking a difference of the smoothed and original maps.

The procedure results in blobs of density filling in the cagitof the protein. Due to

side-chain alanine conversion, the generated densitgsepts the maximal volume of the
pocket achievable without backbone rearrangements. Thsitgds further used as an
additional energy/penalty term in montecarlo side-chairutation (Fig. 1).

This protocol was applied fate novdinding of compounds that bind to the N-terminal
lobe of protein kinase CK2 and prevent its interaction witd tegulatory subunit CK2
Screening a large virtual chemical database against thergied ensemble of four most
druggable conformations yielded a series of compoundsibi experimentally validated
and confirmed to inhibit the subunit interaction in a dospatelent manner.

3 Better Deleted Than Displaced

The generated receptor conformations will rarely cover@40f the protein pocket con-
formational space. It is safe to assume that any generatddrooation is only partially
correct, with some elements still interfering with liganddiing. Therefore, a customized
or systematic removal of those parts may lead to “dockabdekpt models in which the
ligand binding geometry is successfully reproduced, ptedithat the removed parts is not
the main determinant of the ligand-receptor interactiohispart can later be brought in
as a part of the refinement, if needed.

3.1 SCARE

The majority of the induced fit changes involve a few protéileschains and only a minor
adjustment of the backbone. Therefore removal the pocké&st pathe side-chain level is
frequently sufficient. We developed an algorithm that systecally scans pairs of neigh-
boring side chains in the binding pocket, replaces themayiaés, and docks the ligand to
each “gapped” version of the pocket. All docked positioressored, refined with original
side chains and flexible backbone and re-scored. The opE@ARE (SCan Alanines and



Single Grid
Cross Docking

SCARE
Docking

Figure 2. The SCARE algorithm successfully reproducestigainding geometry in difficult cases where tradi-
tional rigid-receptor docking fails.

REfinef protocol identifies a near native conformation (under 2 A RN Ss the lowest
rank for as many as 90% of the cross-docking complexes (canpab0% success rate
with optimal single receptor cross-docking) (Fig. 2). Thiegedure predicts not only the
binding pose of a ligand, but also conformational changasded by its binding, therefore
producing a new highly relevant protein conformation theat be used in VLS along with
the original one.

3.2 DOLPHIN

In the recent years, there is a great interest to a specifecayprotein kinase inhibitors,
the so-calledype Il inhibitorsthat induce a transition of the kinase activation loop frésn i
active, DFG-in, position, to the DFG-out state. This tréiosiis too large to be modeled
by any existing computational method. However, we found tiva above “better deleted
than displaced” strategy is very helpful in induced fit dogkof type Il ligands to DFG-

in structures. We showed thBeletion-Of-Loop from PHe-INDOLPHIN, Fig. 3) kinase

modification leads to models which

1. Reproduce the correct binding geometry of the existipg ty ligands.
2. Selectively score active type Il ligands higher than fivas and decoys.
3. Provide means fan silico ligand activity profiling.

Fig. 4 illustrates a great potential of the DOLPHIN kinased®@ls as screening and profil-
ing devices for type Il kinase inhibitors.

4 Ligand Guided Model Selection and Generation

Multiple receptor conformations for high throughput ligeshocking can be generated with
one or several ligands actually present in the binding &italy receptor-flexible docking
of a few known ligands can be performed to force the recepiior alternative confor-
mations. The irrelevant generated conformations can tleefiltered out by evaluating



Figure 3. The DOLPHIN kinase models are powerful screenmgceés for type Il kinase inhibitors. (a) - Initial
DFG-in structure, (b) - modified structure, (c) - docking df/pe-11 ligand.

Experimental Potency or Affinity
2tygeEpzi¥g3383z:282s9s5E @ o
ABL1 oo oo ° o o @-'w
Il Rl = @~10nM
BRAF1 ° c @ ° X ® ~ 100 nM
k@ @< o0 @ ° o X ® ® ~1uM
vkis @ @ @ <o 0@)® o o © 0 @ o X X @ - ~10uM
SR c @ X[x] |e X Getedmd T
Affinity Predicted by DOLPHIN Models
ABL1 [ 2} e @® Qe ®
BRAF1 X [ 2K J . X
@ @ o e @@ e [ . [ ([
Mki4 @ ® @ [ J . . .. e o oo . . o X @
SRC X|e|@ .l @ . X

Figure 4. Comparison of experimental activities of knowpetyl kinase inhibitors with their binding affinities
predicted by the DOLPHIN kinase models.

the enrichment factor on a test set. Bisson €t a@enerated multiple conformations of
androgen receptor with two different antagonists by Madéto sampling in ICM. Each
conformation was tested for its ability to discriminatevbeén AR binders and non-binders
in a panel of 88 nuclear receptor ligands. The two AR confdiona with the best enrich-
ment characteristics were then used for virtual ligandesurey of the marketed drugs for
potential androgen receptor antagonists. Three identiigghsychotic drugs exhibited
anti-androgenic activity and were then rationally re-msgd to nonsteroidal molecules
with improved AR antagonism and marked reduction in affifdtydopaminergic and sero-
tonergic receptors. Similar procedure led to productivelet® of two G-protein coupled
receptors, M2 muscarinic receptor and melanin concentréidrmone receptbrand re-
sulted in successfule novandentification of new modulator chemotypes.



5 Conclusion

We described a series of computational approaches that &llmodel receptor flexibility
in molecular docking. These methods present a practicairaltive to concurrent protein
and ligand simulation, and lead to productive receptor rtsosigtable for ligand docking,
screening, and profiling. The new approaches were sucdlgsapplied to find novel
inhibitors in several difficult cases.
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Simulating the Early Steps of Amyloid Fibril Formation
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More than 20 human diseases are associated with the setftbsof proteins into transient
cytotoxic oligomers and eventually amyloid fibrils. Alzhmgr's disease, affecting today more
than 15 million people world-wide, is characterized by thgragation of the &(1-40)/A3(1-
42) peptides. Because aggregation is very complex, stalatharacterization of the interme-
diate species remains to be determined. Similarly, thoughethylated A3(16-22) peptides
inhibit the fibrillogenesis of full-length & and disassemble fibrils. vitro, there is little infor-
mation about their mechanism of action. Here, | review recearse-grained protein simula-
tions aimed at understanding the dynamics and free enertacslof amyloid-forming peptides
using the activation-relaxation technique, molecularadyits and replica exchange molecular
dynamics simulations.

1 Introduction

Neurodegenerative diseases such as Alzheimer’'s and piseases are characterized by
the aggregation of non-related proteins of various amirig leogths and compositiorts.
There is strong evidence that the soluble oligomers, fognmirthe early steps of aggre-
gation, are the most cytotoxic specfeStructural characterization of these species is dif-
ficult, however, experimentally, because they are unstafdespan a timescale of several
daysin vitro. One numerical challenge in characterizing these trahsiggomers is the
development of coarse-grained models and sampling methildsto explore, at an ap-
propriate atomic resolution, large time and spatial scalgecently, Ma and Nussinov
gave a schematic overview over some simulation methodkjdimg all-atom molecu-
lar dynamics (MD) simulations in explicit solvent and caagrained DMD simulation?.
All-atom implicit solvent simulatiorfs® and coarse-grained Langevin dynaniase also
performed. Here | present recent simulations aimed at stafeding the dynamics and
free energy surface of amyloid-forming peptides using asmgrained implicit solvent
protein force field (OPEP) coupled to the activation-retepratechnique (ART), MD and
replica exchange MD (REMD) simulations. In an accompanpiager, we present coarse-
grained MD and REMD simulations of #16-22) oligomers with multiple copies of an
N-methylated inhibitor.

The coarse-grained protein simulation package is disduss8ec. 2, with emphasis
on the force field and the benchmarks used for validating tbem model. The results of
protein aggregation simulations will be outlined in Secnd &ec. 4.



Figure 1. (A) Schematic picture of the coarse-grained motidst side-chains are representated by a sphere
with appropriate radius and physico-chemical property. §Betch of the activation-relaxation technique. Start-
ing from a minimum, the system is subject to a random pertimbaand is pushed along the eigenvector of
negative eigenvalue until a saddle point is reached, thieme® to the connecting minimum. (C) A local en-
ergy minimum found by ART and MD simulations ongfl6-22) hexamer displaying structural characteristics
of cross# structure. (D) A representativé-barrel found in MD-OPEP simulations of 18m(83-89) chains
starting from a disordered state.

2 The Coarse-Grained Protein Simulation Package

2.1 OPEP Force Field

The off-lattice model we use consists in a detailed repitasen of the backbone, mod-
elled by its N, H, @, C’, O atoms and in one bead or centroid for all side-chaixsept
the proline amino acid which is represented by all heavy at(sae Fig.1A). OPEP (Op-
timized Potential for Efficient structure Prediction) viers3.2 is expressed as a sum of
local, nonbonded (VdW) and hydrogen-bond (H-bond) te¥ms:

Elocal - Z Kb(r - Teq)Q + Z Ka(a - aeq)Q + Z kQ(Q - Qeq)2

bonds angles imp—tors

+ Y kou(d = G0)® + Y kou (v = vo)? (1)
¢ "

The termE),..; contains force constants associated with changes in bogthie and
bond angles of all particles, changes in improper torsidtisaside-chains and the peptide



bonds and changesdnandy angles, where, = ¢ within the intervalgiower, Pupper] and
¢o = min(¢ — Plower, @ — Pupper ), Otherwise, withpiowe, = —160°, andeypper = —60°,
respectively. Similarly, we us@oyer = —60° and,ppe, = 160°. Note this analytic
form does not prevent sampling of conformations coverihgallies of¢ andq).

The nonbonded interactions are modelled by:

0 12 0 6 0 6
). ). rY.

Evaw = € (—7> ~2 <—7> H(ei;) — €ij <—J> H(=ey5) (2
7’1] 7’1] TZ]

Here the Heavyside functioH( y=1lifx > 0 and 0 ifz < 0,75 is the distance between
the particles andj, rY; = (r) +r})/2 with r the Van der Waals radius of partiale
Finally, theEy bond term conS|sts of two-bodyHy 51) and four-body U o) terms:

Epp1 = Z enpi—a p(rij)v(ou;) + Z enpr>a p(rij)v(ouj) with  (3)

1j,j=i+4 ij,j>i+4
o o
p(rij) = 5(f)12 - G(f)lo (4)
Tij Tij
cos? o, @z > 90°
v(as;) = { 0, otherwise ()

The sum in eq. (3) is over all residuéand; separated by = i + 4 andj > i + 4
(helices 3, are thus excluded),; is the O..H distance between the carbonyl oxygen and
amide hydrogeny;; the NHO angle and, set to 1. @, the equilibrium value of the O..H
distance.

Four-body effects, which represent cooperative energiéwden hydrogen bondg
andkl, are defined by

Eups = ZECOOP exp(—(rij — 0)*/2) exp(—(ri — 0)*/2) A(ijkl)
+ Z £CooP exp rzj o 0)2/2) exp(—(Tkl — 0)2/2) A'(l]kﬁl) (6)

with £¢°°P ande ;" the cooperative energies farhelices angs-sheets. The parameter
A(ijkl)is setto 1 if residuesy( [) = (i+1,j+1) and § =i+4,] = k+4), otherwiseA (ijkl)
= 0. Thus helicedI are not stabilized. The paramet®f(ijkl) =1 if k£ and! satisfy either
conditions: &, [) = (i+2,j—2) or (i+2, j+2); otherwiseA’ (ijkl) = 0.

2.2 Sampling Tools

Three sampling tools can be used with the OPEP force field; ARMD! and REMD?.
ART generates trajectories of several thousands of evertshengs at each event the
system from one relaxed state to another, going throughtaration barrier (Fig.1B), and
accepts or rejects the move according to the Metropolisraoit. By efficiently crossing
energy barriers, ART therefore allows for a rapid samplihtpa energy conformations.
In contrast to ART, MD, which solves Newton’s equations oftimie, can explore protein
dynamics and REMD, which runs in parallel a series of MD satiohs (or replicas) at
various temperatures and exchanges them periodicallg tissnMetropolis criterion, can



explore protein thermodynamics. In the applications preskhere, the integration time-
stepis 1 fs;I"is controlled by the Berendsen’s bath and the free energldsilated using

F = -RT log H(z,y), wherex andy are two reaction coordinates, R is the gaz constant,
and H,y) is the histogram of andy.

2.3 Benchmarks

A number of systems have been used to train and validate tlEeP@Rrameters. First,
the analytic OPEP form is sufficiently rich to discriminaggiie from non-native protein
structures for 29 targefsSecond, the applicability of OPEP in folding was recentljise
ited on the 60-residue B domain of protein A and we found thRTOPEP simulations
recovered the experimental three-helix bundle startioghfrandom states, but also ex-
plained the observed shift to another PDB topology upon timts!® Third, we verified
that MD-OPEP describes qualitatively correctly the dyrzmaf proteins around their na-
tive states, although the implicit solvent and the coarséngd nature of the side-chains
modify the clock! Finally, we checked that REM-OPEP reproduces the structune
thermodynamical properties of non-amyloid peptides suctha secong-hairpin from
protein G and the 20-residue Trp-cage, starting from rariglehosen state¥’

3 Free Energy Surfaces of Multimers

An important question in protein aggregation is to charémehe free energy surface of
small multimers (e.g. dimers or heptamers) because thelgepluspecies may represent
building blocks for further assembly.

We first probed the free energy surface of the(26-22) dimer, resulting from a 50 ns
REMD-OPEP simulation starting from two disordered chamsindom orientation. We
used eight replicas witfi" varying between 287 and 500 K with exponential distribution
and an exchange time between neighboring replicas of 2gding to an acceptance ratio
between 300-40%.

The free energy surface at 310 K projected on the cosine oatigde between the
two KLVFFAE chains and the extended status of the chains,the product of the end-
to-end distance of the chains divided by the product of thetterend distance for two
ideal g-strands, shows multiple free energy minima. These aregister and out-of-
register parallel and antiparallgtsheets, parallel loops and antiparallel loops, and cross
conformations. Itis interesting that all these states haen described by all-atom REMD
simulations in explicit solvent! Overall however, the dimer is found disordered, with a
calculated random coil signal of 64% at 310 K.

Does the population gf-sheets change in higher-order species? To this end, we per-
formed 50 MD simulations of 100-300 ns ¢i2m(83-89) heptamer at 310 K.Starting
from disordered states, we find that amorphous aggregdtasgtesent 65% of the pop-
ulated states, albeit well-ordered morphologies exisesehnclude the cross-structure
observed experimentally and shown in Fig #@yith Ca..Ca distances of 5.6 between
the strands and 104 between the layers, and orthogorasheets with only the merid-
ional 5.0A reflection. Of particular interest is the finding of a vayieff open and closed
(B-barrels consisting of six and seven chains with a Bolztnmaobability on the order of
10%, i.e. a topology observed for KFFE hexaméasd A3(16-22) hexamefausing other
simulation protocaols.
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4 From Random States to Fibrillar-Like Morphologies

Based on ART-OPEP and MD-OPEP simulations of KEEFEJFGAIL'® and 32m(83-
89)*° of various oligomeric sizes (from 6-mers to 16-mers), weldaxtract a generic
aggregation picture of peptides with chain length less tttaamino acids. Starting from
random orientations of the chains and random coil confaonatof each chain, the pep-
tides first come together to form amorphous aggregates withioastranded or three-
stranded3-sheet rapidly in place. Then, the system can remain trafgrea very long
time in amorphous aggregates characterized by a total nuoflséde-chain — side-chain
and main-chain H-bonding interactions very similar thobeesved within well-ordered
(-sheet structures. Or the system finds pathways to evolyesi@rly to transient orthog-
onal and paralleB-sheets or a variety of closed and opei#arrels. Fig. 1D shows the
closeds-barrel obtained from MD-OPEP simulations of 88m(83-89) chains at 310 K
and a concentration of 12mM. Thisbarrel, which displays an inner diameter of 1.1 nm
(minimal interior side-chain — side-chain distance) anidtisguing in terms of cytoxicity,
can be formed from amorphous or orthogofiaheets>

5 Concluding Remarks

We have described a coarse-grained protein simulationgggcto study folding and ag-
gregation. The OPEP force field is generic and can be usedidy she structural and
thermodynamical properties of any amino acid sequenceg ddidand REMD, or explore
the low energy conformations using ART. Based on ART-OPHEP MD-OPEP simula-
tions, we could predict the importance of reptation moveseichains in the final steps of
aggregation, a mechanism later confirmed experimeritalypplication of this package
to amyloid-forming peptide aggregation can complemeneérpents by pointing to the
non-negligible Boltzmann probability of unexpected taqpés, such as thé-barrel. This
package is now used to study the aggregation of tHELA0)/AG(1-42) proteins associ-
ated with Alzheimer’s disease and fibril disassembly calmeithhibitors, as reported in
an accompanying papetr.
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Milestoning is a theory and an algorithm to compute kinetind thermodynamics of complex
molecular systems. It makes it possible to study generatgsses on rugged energy land-
scapes on timescales not approachable by straightforwatdcMlar Dynamics (microseconds
and milliseconds). The algorithm is based on monitoringypess along a set of discrete states
(Milestones) using short-time microscopic trajectorieat tcapture local dynamics. These dis-
crete states can be (for example) hypersurfaces perpdadiola reaction coordinate. Transi-
tion times between Milestones are recorded to produce tEicst-Passage-Time-Distributions
(LFPTD). The theory is based on a non-Markovian integralagigu for the probability flow
between Milestones. The integral equation is equivalerihéoGeneralized Master equation.
No specific model is assumed for the microscopic dynamice thkory uses the LFPTD to
compute the overall kinetic and thermodynamic. Complersitaons in proteins were inves-
tigated (allosteric transition in Scapharca hemoglotie, recovery stroke in myosin). In the
present review only the simple example of alanine dipepsidiscussed.

1 Introduction

Atomically detailed simulations provide useful inforn@ation biomolecular processes us-
ing a single unified model. Specifically, Molecular Dynam(ibtD) algorithms are avail-
able to compute efficiently thermodynamic and equilibriueihévior. However, MD is
limited when studying non-equilibrium processes and kasetStraightforward and typ-
ical trajectories of condensed phase systems rarely exuasdreds of nanoseconds, far
too short to investigate the kinetics of many interestirgpbiysical systems. Examples are
of conformational transitions, ion permeation, proteifdiog and more. Extending the
time scale of molecular simulations is therefore an impdrtasearch direction and has
attracted the attention of many investigators.

It is useful to classify processes of long time dynamics tnto categories: Dynamics
which are (i) activated or (ii) diffusive (figure 1). Signiiot progress has been made in al-
gorithm design and theory development for activated pse®s* 8611 |n activated pro-
cesses rare short timieajectories pass over significant free energy barriersotermine
the overall kinetics. Progress has been slower for difeipiocesses (or a mixture of acti-
vated and diffusive processes) in which the times of theviddal transitional trajectories
are intrinsically long. Diffusion on rugged energy landsesis not necessarily associated
with a narrow transition domain between stable states. fomatransition domain is typi-
cal in activated processes and facilitates the use of shwetttajectories to probe reactive
events. If we probe an activated system at different tineesliin the majority of the ob-
servations we do not observe something new. The systemmsiinghe reactant state until
a rapid (but rare) transition is initiated to the productestdn contrast, probing diffusive
processes show spatial progress in sequential obsersatMilestoning is a theoretical
and computational approach that aims at diffusive or mixedgsses. Nevertheless, it can
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@ (i)

Figure 1. A schematic representation of an (i) acti-
vated and (ii) diffusive energy landscape that leads to
different (corresponding) types of dynamics.

also handle activated processes and therefore suggestfoarutechnology for the two
types of dynamics.

A conceptual approach to long time dynamics is that of cograming in space and
time. Indeed a number of groups have followed this idea, awe [proposed fitting pa-
rameters of a kinetic mod€l® or of the diffusion equatiof based on atomically detailed
simulations. For example, itis assumed that rate constexypi@nential relaxations in time)
describe transitions between the states of a Master equdmwver law and stretched ex-
ponential kinetics were found in biophysical kineficsMoreover, there is no rigorous
mapping from an atomically detailed description of the sgsto a diffusion equation and
the decision of what exactly to fit is not unique.

In contrast to the phenomenological modeling of the Mastgragon there is a rig-
orous approach to spatial and temporal coarse graining tanZig and Mori. It is the
Generalized Langevin Equatibnor equivalently the Generalized Master EquatforA
memory kernel (and not a rate constant) describes the ingp#tee “bath”. Unfortunately,
the numerical calculations of the memory kernel of the Galimrd Master Equation are
difficult, motivating the use of the simpler and less rigagdliaster Equation. At the core
of the Milestoning approach one finds an algorithm to circantihe difficulty in com-
puting the memory kernel. The function we compute is forgnatjuivalent but easier to
estimate numerically than the rate kernel. Therefore tHestbning approach is equivalent
to the Generalized Master Equation and is based on a rigtiheosy of non-equilibrium
processes.

2 Milestoning

2.1 Theory

We describe below the approach of Milestoning. The Milestgitheory follows from an
intuitive expression in which we capture the charactesstif the microscopic dynamics
in a non-Markovian kernel, and then solve the dynamics withe assumption of local
equilibrium.
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Figure 2. Examples of concrete realizations of the
Milestoning idea: (i) Hypersurfaces (thick lines) per-
pendicular to a reaction coordinate (dashed line),
(ii) hypersurfaces along reaction coordinates (thick
dashed line) connecting local free energy minima be-
tween local free energy minima, and (iii) a grid over
(iii) a few collective variables (illustrated for two). The
Milestones are the boundaries of the squares. A po-
tential transition at one interface it denoted with the
double-ended arrow.

Let the vector describing the atomically detailed systenkbe RY. We have at our
disposal an operatdp that generates trajectories such thatx (0),¢] = X (¢) wheret
is the time. Depending on the type of dynamics at h&nid a coordinate or a phase-space
vector. The numerical application &f is usually made in small time steps and is repeated
many times to produce a long time trajectoxy(t) = D™ [X (0),At],At = t/N. The
generation of the trajectories is by far the most expensl@utation at hand (also in Mile-
stoning). Typically we will be interested in an ensemblea#ative trajectories that transi-
tion from a state of reactant to a state of product. The dgactpling of the transition (i.e.
computingX (¢) € product whileX (0) € reactan}t is assumed too expensive to pursue
with direct use ofD (of course, if it is not too expensive an exact solution ofiheblem
is always better than a solution based on approximationbysipal assumptions).

We now discuss the coarse grained model that we use to arthlyzeicroscopic data
and extend the time scale of the simulation. We partitiorsffeece and define discrete states
s. Two of these states = 0 ands = L are the reactants and products respectively. Other
L — 1 statess = 1,..., L — 1 are called “Milestones”. A realization of the space pantiti
and “Milestones” is of (i) hypersurfaces perpendicular teaction coordinate, (ii) local
free energy minima, and (iii) a grid over a reduced set ofemive variables (figure 2).
The examples discussed in the present manuscript (and ipullished papefs 19 are
of hypersurfaces perpendicular to reaction coordinatesvener, the formulation below
applies just as well to (ii) and (iii).

The probability of being at Milestoneat timet is P; (¢). To computeP; (t) we derive
from atomically detailed simulations the transition prbitity density K, » (7). Itis the
probability of making a transition from stateinto states’ after an “incubation/waiting”
time 7 in the states. The incubation time captures memory effects in which thedition
probability betweers ands’ depends on the time spent alreadyint is the only micro-
scopically derived function that we need for Milestoningot®lthat we assume that the
transition probability is independent of the absolute tiffibis assumption is not valid in
systems that strongly deviate from equilibrium or a staigrstate. We argued and illus-
trated” % that it is much easier to compute the above matrix than tooparthe complete
simulations from reactants to products. Scaling arguniasispport of the expected speed
up are presented in the section Algorithm. This matrix idlfyjnésed in a probabilistic non-
Markovian framework to obtain the overall kinetics of thestgm.

For further development it is convenient to define anothection Q; (t). It is the
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probability density that a trajectory will make a trangitimto s at timet. With K s (7)
and the definition of), (¢) at hand, equation (1) below simply balances transition @rob
bilities. The system is initiated at zero time and startingiyabilities are injected into the
Milestones. At later times we consider transitions betwt@erstates. To make a transition
into s from one of the nearby it is necessary to transition first 6, wait (or incubate) at
s’ for time 7 and then transition ints. The probability density of making a transition into
s attimet — 7 is Q¢ (¢t — 7). The probability density of making a transition froshto

s after waiting timer is K, o (7). Finally, a summation over all stateSthat are directly
connected ta, and over all incubation timesgives equation (1) below.

Qu(t) =3 (t—07) P, (0) + / S Koo (1) Qo (= 7) - dr (1)
0o

It is a matrix-vector equation in space and an integral equation in time. The unknown
is the vector of functions) (¢). This equation is called in physics CTRW (Continuous
Time Random Walk) and was used in phenomenological modefitiganspo. We are
connecting this equation with atomically detailed simiolas and use it to study long time
phenomena. Microscopic dynamics is used to compilte (7).

Our interest focuses oR; (), the probability of being at at timet. With Q; (t)
determined from equation (1 ) we wrife, (¢) as the integral of probabilities to make a
transition intos at an earlier time’ and to remain at (avoid transitions to other state§
until timet. Summation over all channeisgives

P, (t) = / Qs () |1-)" / Ky (1) - dr| dt’ (2)
0 s 0

Equations (1) and (2) are very general. They do not assunt etandynamics or mecha-
nism, only that a transition matrix (with memory) can be dedifand computed) between
states that represent the system. The solution of (1) anisl (@ a topic in applied mathe-
matics and was obtained with different approaéiés> The most obvious one is to solve
the integral equation (equation (1)) by small time stepsic&ithe number of degrees of
freedom was greatly reduced and the functions consideszghach smoother with respect
to time compared to MD, the computational efforts are s#gligible compared to the

calculations of the trajectories.

Qs (0) =P (O)/At
Qi (A1) = Qu(0)+ Y K (A1)~ Qu (0) - At
Qu (20) = Qu (0) + 52 (Ko (A1) - Qu (A1) + Ko (2-81) - Qu (0)] @

Another solution is based on Laplace transforms on (1) apdui@ algebraic manipu-

lation of the transformé. We quote only one result. Define the off diagonal matrix

(K) (t) = K, (t),s # ¢, the time integral f) = [ f (¢) dt and an average over
s,s’ 0

)

an ensemble of trajectories iy A useful measure for the kinetic properties of the system
is the overall first passage time. It is defined as the timeiredtior a trajectory initiated
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at the reactant to reach the product state for the first tinfee &hsemble average of the
overall first passage timeis given by

Pl (R ) 1= (B )] e (4)

wherel is the identity matrix and; is a unit vector in the direction of the initial Milestone
i. The last Milestone is set to be absorbing.

2.2 Algorithm

It is important to emphasize that the theory described irptiegious section is “equation
free”. We do not assume Langevin, Brownian or Newtonian raeis. All reasonable
forms of dynamics can be used to generate numerical valui® dfansition matrix. We
compute the transition matrix as discussed below and we tffit p@rameters to a partic-
ular coarse-grained dynamical model.

The only task of the microscopic dynamics is to compute tlmsition matrix
K, ¢ (7). This matrix is used in equation (1-4) to determine the dVeste and the evo-
lution of the system in time. To facilitate the calculatiomdamake it highly efficient com-
pared to straightforward MD we restrict our attention toteyss that satisfy the following
requirements:

Condition (i): The system is in a stationary state (cajpedor Milestones). Only a few
variables may be left non-stationary.

Condition (ii): Trajectories that arrive at Milestoné are distributed in the hyperplane
according to the stationary distributiory .

If the system is in equilibrium, or sufficiently close to itetlh assumption (i) is
obviously satisfied. If the equilibrium is canonical there throbability density is
ps = exp[-0U (X)], X € s. This is the weight that was used in the alanine dipeptide
example discussed in this paper. Alternatively, it is palsdio have the system at a station-
ary (time-independent) but non-equilibrium state. An eglis of a stationary flow of
liquid in a confined environment. The second condition iglgulbhan the first. It requires
the states; to be well separated in time so that the distribution of tjges arriving to
s’ is the same as the stationary distribution of conditioni(®, ps. For example, this
condition is satisfied if the time scale for the transitiorldager that the time scale to
reach local equilibrium at each of the Milestones. In piaeti is possible to monitor and
vary the transition time scales by placing the MilestondBaently apart with the second
condition in mind. Of course, the choice of Milestoning slidbmake the transition times
between Milestones much shorter than the overall time sufaflee reaction. Otherwise,
Milestoning is not advantageous to MD.

The calculation o<, () is done by sampling trajectories between a specific pair of
statess ands’. The trajectories are initiated ataccording to the stationary distributipn
and their termination times atare recorded. These distributions are binned to estimate th
probability that the system will transition betweemands’ after incubation time-. They
are called the Local-First-Passage-Time-DistributioRFID), and are also the matrix

elementsK (7). The LFPTD is normalized such thdt , = [ K, . (7)dr is the
0
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Figure 3. Sampling equilibrium distributions in the
Milestones (hyperplanes perpendicular to the reaction
coordinate) of the transition in alanine dipeptide. The
distributions are projected onto a two-dimensional sur-
face of internal coordinate®, ¢). Note that all simu-
lation includes all coordinates of the dipeptide’s atom
and the coordinates of periodic box, solvating water
molecules.

fraction of trajectories that were initiated aand terminate a¢’ Sl =11.

What is the gain in studying the kinetic with Milestones imﬂsof using straightfor-
ward MD? This important question was discussed extensielfractical gains were
clearly illustrated in the examples of 4, 15. For complessnge quote an argument for
computational speedup expected for diffusive procé8sg&se required computational re-
sources are proportional to the number of force evaluatodstherefore to the lengths of
trajectories that reach the product state. Consider aiogaict which the system diffuses
freely for alength L. The time to react using straightford/aiajectories is proportional to
L2. In Milestoning we chop the complete lengthto (say)N pieces. The time to diffuse
through one piece i$L/N)>. There areN pieces and therefore the time to destination
in Milestoning is(L/N)2 - N = L2/N. We obtain a speed up proportional to the num-
ber of Milestones used. Exponential speedup for systentsfrgie energy barrier can be
illustrated as welf.

In the next paragraph we discuss a concrete example. Wedeonmiogress along a
reaction coordinate measured by passing hypersurfacéssioties) orthonormal to it. In
figure 2.ii we sketch a terminating trajectory between Mdegss ands — 1. An ensemble
of such trajectories is used to compute the probability tiess<; _; (7) and the overall
rate according to equation (4).

2.3 Example: Folding of a Solvated Dipeptide

We review a detailed calculation of the kinetics of a soldadgeptidé®. All the calcu-
lation described below were performed with the MOIL prograimich is in the public
domair?. The Milestones were constructed from adiabatic energfasarof they di-
hedral angle. The energy of the peptide in vacuum was mieichizith the¢ dihedral
angle constrained to 18Qhe ¢ dihedral angle constrained to values between 21801
+18( degrees with a step size of 2.5 degrees. The minimizatiamsdged a total of 144
structures (and potential Milestones) that we denote by1, ..., 144. Milestones, which
are hyperplanes perpendicular to the reaction coordiaatejefined by the coordinate of

the minimized structureX,, and the numerically estimated normals to the hyperplanes
— Xsp1—Xs1
qs = [Xop1—Xo1]"

The different configurations were solvated in water boxegotime (2R)3 and 248
water molecules. Molecular dynamics simulations consgér@io each of the hyperplaries
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Figure 4. A typical example for a local first passage
time distribution in a solvated alanine dipeptide. The
example below is for a seven milestone partitioning
of the reaction coordinate. The computed transition
is from Milestone six to five (the indices below refer
to the total of 144 Milestones that we considered us-
o ] ing numerous variatiod8. The calculation with seven
Milestones gives the correct rate. Even on this very
0 i simple example we obtain significant speedup. The
average transition time between any two Milestones in
E g the seven Milestone run is about 3.6 picoseconds. A
cost of a single trajectory that passes all Milestones
o 5 I 5 o % 3 from the first to the last will be3.6 x 6 = 21.6 pi-
coseconds. This is about 3 times shorter than the cor-
rect first passage time of about 60 picoseconds.

120

100

Kits L el

were used to sample equilibrium distributions in the Mibess. In figure 3 we display a
projection of the simulations on(@, 1) map. Since the hyperplanes are defined in Carte-
sian space the projection on the space of internal cooelrsdtow significant “width”. We
verified that the simulations create exact hyperplanes ite€ian space.

Table 1. A summary of runs for alanine dipeptide con-
formational transition from an alpha helix to an ex-

M ?(ps) %(fs) tended chain conformation. The first column is the
144 500(3.1) 31.2 number of Milestones. The case of three Milestones
(last row) is exact. The second column is the esti-
74 261(1-2) S7.7 mated overall first passage time and the third column
73| 330(1.6) 58.3 the average LFPTDR(- equation (5)). The runs differ

37 104(0.63) 129 in the number of Milestones used. When the number
of Milestones is larger then the speedup is more sig-

19 62(0'47) 373 nificant. However if the number of Milestones is too
11| 53(0.50)| 1,305 large the local equilibrium assumption is violated and
7 62(0.73) 3,581 the rate is inaccurate. We compare the velocity de-
correlation time (400 femtoseconds) with the average

> 68(0‘93) 10,902 transition time between Milestones. If the number of
3| 64(1.04) - Milestones is larger than 19 then the LFPTD is shorter

than 400 femtoseconds and the rate is wrong. If the
numbers of Milestones is smaller than 19 the results
are quite accurate.

In the next step we initiate MD trajectories starting frone tonfigurations sampled
at each of the Milestones, The trajectories were integrated to termination at Midass
s + 1. The distributions of termination times are the elementsheftransition matrix
K s+1 (t). Atypical result is shown in figure 4. Initially we have use¢4lMilestones.
However, in this case the termination times are very shodtthey do not satisfy the
condition about relaxation to equilibrium (condition JiiA useful test for relaxation is the
velocity decorrelation time that we found in that case tolb@uh 400 femtoseconds (figure
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8 of 15). A typical transition time between Milestones, @stied as the following average

oo

T = %Zf—s = %/TS . (KS,S+1 (7') + Ks,s—l (T))dT (5)
S 0

The typical transition time must be larger than the velodiycorrelation time. In table 1
we show that this condition is satisfied only for a number destones smaller than 19.
All the calculations with a number of milestones smaller gua& to 19 approximate well
the exact rate.

This calculation illustrates that Milestoning providesa@te results for a non-trivial
but exactly solvable model. It was also shown that it is gigantly more efficient. Com-
paring directly simulation time, we have concluded in oublpration that in this example
Milestoning was more efficient by a factor of about 9. In otba&lculations of larger more
complex systems (e.g. the allosteric transition in Scagghemoglobin), the speedup was
a factor of about 1,000.
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Simulations of biomolecules with realistic representagiof cellular environments remain chal-
lenging. Implicit solvent methods can reduce the systemessgof freedom and accelerate con-
formational sampling. Implicit solvent methods can be ttgved based on a decomposition of
the solvation free energy into electrostatic and non-peodantribution. The electrostatic con-

tribution based on continuum electrostatics theory canobeeniently calculated according to

the generalized Born (GB) formalism. While the GB formalismvell established in aqueous

solvent, applications to dense cellular environments atdrbgeneous biological membrane
environments are discussed.

1 Introduction

Biological function is often not fully understood until agtire of biomolecular structure
and dynamics at the atomic level is developed. Structurpsodéins and nucleic acids have
become widely available from X-ray crystallography and Nfiectroscopy while atomic-
level insight into single molecule dynamics has been gaprgdarily from computational
molecular dynamics studies. Molecular dynamics simutestiare well established for the
study of single biomolecules over nanosecond time scalgst bemains challenging to
study larger biomolecular complexes and longer, bioldlyicaore relevant time scalés

A significant part of the computational cost of molecular ayrics simulations stems
from solvent-solvent and solute-solvent interactions.thi@ canonical approach the sol-
vent environments is represented in an explicit fashioerofesulting in systems with
many more solvent atoms than solute atoms. One approacbdeleaating simulations of
biomolecules involves the application of mean-field dgsins of solute-solvent interac-
tions instead of explicit solveAt A common strategy is the decomposition of the solvation
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free energy into polar and non-polar components accordiegtiation 1:

AGsplvation= AGsolvation,polarJF AGsolvation,non-polar (1)

The polar comntribution of the solvation free energy is duelectrostatic solute-solvent
interactions and can be obtained by invoking continuumtedstatic theory. In this for-
malism, a solvated biomolecular system may be describedetodexplicit solute charges
embedded in a low-dielectric cavity that is surrounded bgriauum high-dielectric en-
vironment. Such a system is described rigorously by thesBoisquation 2, which relates
the electrostatic potential to a distribution of chargeg, and dielectric constants

V- [e(r)Vo(r)] = —4mp(r) (@)

It turns out that direct solution of the Poisson equatiorhibite difference methods is
also computationally expensive. Instead, the empiricabgalized Born (GB) formalism
is more commonly employed to approximate the electrossatieation free energy from
Poisson theory at a fraction of the computational tost

Many flavors of the GB formalism have been proposed over thteteao decades. All
are based on the GB equation 3 proposed orignally by Still%t a

1 1 4iq;
AGsolvation,GB: D) (1 - ;) Z \/ 2 J,T_zv/Fa,a. (3)
i,j ri; togoge T B

Different GB implementations vary in the calculation of BB radii«;. Acoording to the
Coulomb field approximation, the; are essentially obtained from an integral gf-* over
the solute cavit§. The most accurate GB methods estimate the integral diraaet! include
additional correction terms to account for deficienciehief€oulomb field approximation
in larger molecules

The non-polar contribution to the solvation free energysists of the cost of solute
cavity formation and contributions from solute-solvenber Waals interactions. These
two terms may be considered separately but are often coahbit@ a single simple term
based on the solvent-accessible surface area (SASA) aegam Eq. 4 with typical

values ofy ranging froms — 30 cal/molA” &2

AGgolvation, non-polar 7 - SASA 4)

2 Simulations of Biomolecules in Implicit Aqueous Solvent

Simulations of biomolecules in implicit solvent become sibke by simply adding the
solvation free energy to a vacuum molecular mechanics giatewith the partial atomic
charges used in the calculation of the electrostatic solvdtee energy taken from the
force field according to Eq. 5. The resulting forces may thenintegrated according
to Langevin dynamic$, Eq. 6, to obtain trajectories that are coupled to solvertibh
stochastic collisions R and frictional forces accordinghefriction coefficienty.

Uimpticit = Unnm + AGsglyation,GBH 7 - SASA (5)
F = _VUimplicit + R — ’y’i’(t) = mr(t) (6)

Implicit solvent simulations represent a compromise betwsomputational efficiency and
the level of realism that can be achieved with a mean-fieldestlrepresentation. Model
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Figure 1. Left: Crystal structure of MutS in complex with DNRDB ID: 1E3M). Right: RMSD ofC,, atoms
(red) and DNA phosphorous atoms (blue) from the experiniesttacture in molecular dynamics simulations
with implicit solvent using the GBMV method in CHARMKA

deficiencies may materialize due to the continuum naturdefirnplicit solvent model
and simplicity of the non-polar term or due to limitiatiomsapproximating the continuum
electrostatic model with a particular GB implementation.

The quality of implicit solvent simulations may be evaluhly comparing long molec-
ular dynamics simulations with implicit and explicit sohtavith experimental datd. Very
similar conformational sampling is observed in long sintiokas of protein G and ubiqui-
tin over tens of nanoseconds. Average root mean squaretideggdRMSD) from the
experimental structures from X-ray crystallography oflésan 1A with both implicit and
explicit solvent?.

Stable implicit solvent simulations of larger complexed afinucleic acid¥’® are also
possible. As an example, simulations of the MutS dimer in glem with mismatched
DNA is shown in Figure 1. The simulations are relatively gHart reach only A after
400 ps which is considered good for such a large complex vattidfle domains. Explicit
solvent simulations of MutS reached a similar deviatiomfithe X-ray structure within the
first few hundred picoseconds (data not shown). Successfilidit solvent simulations of
nucleic acid systems are remarkable because of strongsablient interactions with the
poly-ionic nucleic acids.

It turns out that the GBMV implicit solvent method used heoesinot offer any com-
putational advantage on a time per integration step basikdédarge MutS system because
the ratio of solvent to solute atoms decreases with inangasblute size for a single, ap-
proximately spherical solute molecule. Previous timirgiddave found that implicit sol-
vent simulations with the relatively expensive but acceiaBMV method are only faster
for single proteins with up to 200-300 residtfesHowever, implicit solvent offers addi-
tional advantages, in particular the ability to traversaefoomational space more rapidly
when using Langevin dynamics with low friction coefficiettts=urthermore, implicit sol-
ventis the only practical solution for simulations of mplé freely diffusing biomolecules
within a given solvent environment.
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Figure 2. Schematic illustration of implicit modeling ofrde cellular environments (left) and heterogeneous
membrane bilayers (right) with continuum electrostatics.

3 Simulations of Biomolecules in Implicit Cellular Environments

Dilute aqueous solvent is generally not a good model of cemhakllular environmentd
The dense concentration of biomolecules and co-solveatepts a complex solvent envi-
ronment with reduced polarizability compared to water aedshindrance due to crowd-
ing. As a first approximation, dense cellular environmeats lse modeled in an implicit
fashion by assuming a reduced dielectric consfaamd an increased cost of cavity for-
mation to reflect crowding effects (see Fig. 2). This raisesdquestion how the confor-
mational sampling of peptides and proteins varies in enwirents with reduced dielectric
response. Based on typical dielectric constants of pretée effects of co-solvents, and
a dielectric modulation of wat&tin crowded environments, one may estimate that the ef-
fective dielectric constant of dense cellular environredies in the range of = 10 — 40.

Continuum electrostatics methods can readily accommadegduced dielectric con-
stant of the environment. Based on physical insight it iseekgd that reduced dielectric
screening enhances charge-charge interactions and ioydarthe formation of secondary
structure elements through hydrogen bonding while the &bion of hydrophobic cores
becomes less favorable in low dielectric environments. ligitsolvent simulations with
dielectric constants between 5 and 80 using a slightly medli&B formalism have con-
firmed these assumptions for poly-alanine and the amphipaéiptide melittin. However,
the simulation results also indicate that even relativelyanchanges in the dielectric con-
stant can affect the conformational sampling of melittimiare subtle ways.
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Figure 3. Conformational sampling of influenza fusion pativith neutral N- and C-termini from temperature
replica exchange simulations with the HDGB implicit meni®anodel. Each of the eight replicas, spaced from
300 to 500K, was run for 15 ns. The potential of mean force ai/kwol is shown as a function of the angle of
the N-terminal part of the peptide relative to the membraorenal and the z-coordinate of the center of mass in
A with z=0 corresponding to the membrane center. The doric@mformation is shown on the right.

4 Simulations of Biomolecules in Implicit Membrane Environments

Biological membrane environments involve heterogenenuvis@nments with a hydropho-
bic core and a polar surrounding aqueous solvent envirotrimeplicit membrane models
therefore require a spatially varying electrostatic and-polar contribution to the sol-
vation free energy. The electrostatic solvation free epean be calculated based on a
layered dielectric systetfhwith a low dielectric core witk near 1, an intermediate dielec-
tric region near the membrane-water interface, and a higtttee environment elsewhere.
Such a model is readily implemented with Poisson theory besgnts challenges for the
standard GB formalism. The application of heterogeneoakediric environments be-
comes possible after introduction of an effective dieleqtrofile e(z) and application of
the modified GB equation 7:

— ! 1 qiq;
AG : - _Z (1 _ ) r @)
solvation,HDGB E : :

2 @] (e +€5)/2 \/T% + aiajefrfj/F‘liaj

The non-polar contribution to the solvation free energy aigries between an essen-
tially zero cost in the membrane interior to a significant@savity formation in water.

Using this scheme, it has been possible to perform implmli¥ent simulations of
membrane-bound peptides and prot&ri8 and accurately reproduce explicit solvent
membrane insertion profiles of amino acid side chain an&fogss an example of first
applications, Fig. 3 shows extensive conformational sargpf influenza fusion peptide
near a membrane interface.
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Summary and Outlook

Implicit solvent formalisms can be used successfully toate biomolecules in cellular
environments ranging from simple aqueous solvent to deabBelar environments and
heterogeneous dielectric environments. These methodstbpeloor for the simulation of
sub-cellular processes in atomic detail and over bioldlyicalevant time scales.
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Scalable Systems for Computational Biology
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Driving up processor clock speed is about to hit severatéifinins, a soaring energy consump-
tion being among them. The BlueGene sys@rfrom IBM is shown to provide performance
in a scalable and energy efficient way. Results from NAMD andlar codes show, how the
system can be used in the area of Computational Biology.

1 The Promise of Moore’s Law

The frequently quoted term “Moore’s Law” goes back to a pgpélished in the Elec-
tronics Magaziné In this paper, G. E. Moore states that

“the complexity for minimum component costs has increaded mte of
roughly a factor of two per year ... Certainly over the shertrt this rate can
be expected to continue, if not to increase. Over the longren,tthe rate of
increase is a bit more uncertain, although there is no retasbalieve it will not
remain nearly constant for at least 10 years. That means By, 1Be number
of components per integrated circuit for minimum cost wél&5,000. | believe
that such a large circuit can be built on a single wafer.”

The “factor of two per year” was later relaxed into a “doublievery two years”. This
statement became known as “Moore’s Law”. It was quoted mangd, not always in
full length or precise form. So it started shifting its meani As a consequence, the
wikipedia'! entry for Moore’s Law lists no less than 9 different formidats on exponential
growth laws related to integrated circuits.

Hans Werner Meuer in a recent pabases linear regression on a logarithmic scale to
fit data from the Top500 list to an exponential growth law. sTisiillustrated in Fig. 1. He
finds a similar growth rate as “predicted” by Gordon Mooras therefore tempting to see
this as another variation of Moore’s law.

These data might generate the impression that computenswitb exponential rate
in about every aspect. But there are already some limitaiisible on the horizon. The
original quotation of Moore’s law was a statement about thlper of components on an
integrated circuit. Cramming more components to the saraeesforces the components
to get smaller in size. In the current CMOS technology thegaizes are now approaching
molecular level$8 and start leaking like a sieve. To make up for the lost ebersty the
energy density has to be increased. In conjunction with ereased clock speed this leads
to the heat flux curves as shown in Fi§. The heat flux is directly connected to the energy
consumption as energy is needed to generate the heat arid atsad it again.

It might be tempting to anticipate a new curve to the righthaf existing two curves
in Fig. 2, but there is yet no technology that allows jumpimgia to a cooler regime.
One way to evade from the heat and energy trap is to trade levgeror the single core
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Figure 2. Module heat flux from various systems in bipolar @WOS technology.

against high clock rate. To obtain high application perfance out of low clocked cores,
many cores have to be thrown at the problem. The IBM Blue Geireone example for
a system that follows this concept. The “green500%igtom February 2008 shows that
this concept may lead to systems with both, high performandehigh energy efficiency.
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2 Blue Gene

On June 26, 2007, IBM announced the Blue Gefé/Bystem as the leading offering in
its massively parallel Blue Ge@® supercomputer line, succeeding the Blue Gehé/L
system. The following description of the Blue Gen@/Rystem is based on a recent paper
by the IBM Blue Gen® teant.

Rﬂl’."k S}'E‘E‘.m
Cabled 72 racks
32node  GxExIA
Node card  vards
32 compute
(32
0, Liord
Compute cari Ii0 cants 1 Bflops
| chip, ' 144 TB
20001 40 14 Tflops
[3RAMS ‘-_ i 2TB
L-\ S JET 435 Gflops
% 64 GB
& 13.6 Gflops
Chip ¥{ord) GB DDR2
4 processors
13.6 Gflops
EMB eDRAM

Figure 3. The packaging hierarchy of a Blue Gen¥/Bystem.

The packaging of the Blue GenéMPsystem is shown in Fig. 3. The main building
block is a single ASIC (application-specific integratectuit), with four IBM PowerPC
450 (PPC450)-embedded 32-bit processor cores, arrangad 881P. A dual-pipeline
floating-point unit (FPU) is attached to each PPC450 core. désign of this dual FPU is
logically identical to the one used in the Blue Gen@llsystem. It supports two simulta-
neous double-precision floating-point calculations in Bliingle-instruction, multiple-
data) fashion, along with instruction set extensions fanptex number arithmetic. The
dual-pipeline FPUs can simultaneously execute two fusdtptyadd instructions per ma-
chine cycle, each of which is counted as 2 FLOPs (floatingipagperations). Thus, each
processor unit (PPC450 and FPU) has a peak performance dd®$her machine cycle.

In addition to the compute nodes, the Blue Geh¥/Bystem contains a configurable
number of I/O nodes. The I/O nodes are physically the sameuatercards as described
above, but their position in the system differentiatesrtlugjical function. 1/0 nodes have
the 10-Gigabit Ethernet (GbE) interface enabled for comigation with a file system and
host computers.
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Thirty-two compute cards and, optionally, up to two 1/O caedte packaged onto the
next-level board, called the node card. Sixteen node caedsliagged from both sides into
a vertical midplane card, completing an assembly of 512 edgenpodes in a8 x 8 x 8
configuration. The inbound and outbound network connestionthis 512-way cube are
routed to four link cards that carry a total of 24 Blue Gen¥/fink (BPL) chips. The
assembly of 16 node cards, 4 link cards, and an additiomatserard is called a midplane
or a 512-way. The BPL chips are relatively simple switches,tdepending on the size
and configuration of a user partition of the system, routevaet signals back into the
midplane (completing the wraparounds for&r 8 x 8 torus) or route the network signals
through cables to another midplane for larger partitionsio Tidplanes, one on top of
the other, complete a rack. Thus, a rack has 1,024 nodesQ98 4pres, giving a peak
performance of 13.9 teraflops (Tflops). Scaling upward, aatk-system can package
72K nodes (288K cores) (where K stands for 1,024) into a affogis (Pflops) (peak)
system, and larger configurations up to 256 racks (3.56 Pfiepk) are possible.

In the Blue Gene/P’ system, three networks are used for node-to-node communica
tion: a 3D torus network, a collective network, and a glotatier network. On the Blue
Gene/l"™ system, the processor cores were responsible for inje@imegceiving) packets
to (or from) the network. On the Blue Gené¥Psystem, a direct memory access (DMA)
engine has been added to offload most of this responsihitity the cores, thus enabling
better overlap of communication and computation. Spedifiche DMA interfaces with
the torus network. The combination of the DMA, torus netw@kd memory system is
capable of supporting high-bandwidth communications.

The Blue Gen@® system software approach is to start with a minimal-funmtly
system stack, but one that is designed to scale. The Blue @estetegy to achieve
scalability and high performance has been to start simphgftample, with space sharing,
one job per partition, no paging, and one thread per core.

3 Application Examples

3.1 CPMD (Car-Parrinello Molecular Dynamics)

The CPMD code is a plane wave/pseudopotential implementati Density Functional
Theory, particularly designed for ab-initio molecular dymics. Its first version was de-
veloped by Jurg Hutter at IBM Zurich Research Laboratorytistg from the original
Car-Parrinello codés CPMD runs on many different computer architectures and it i
well parallelized. The application is mainly written in fi@n, parallelized for distributed-
memory with MPI, with an option to add an additional level afallelism using OpenMP
for multi-processor nodes. CPMD makes extensive use oéttimmensional FFTs, which
require efficient all-to-all communicatién The scalability was improved using a task-
group implementation of the FFT with a special mapping toBhee Gen&) torus net-
work*. Moreover, overlap matrices, which were replicated in ttamdard CPMD code,
have been distributed on a subset of the nodes to be abledéeharge systems (more than
3000 electronic states). The single processor performah€MD was optimized for
Blue Gen&) using SIMD-enabled routines for the most common calls ssch@EMM,
DCOPY, AZZERO, and FFT.

The following comparison was taken from benchmarks with @haoeol vapor/liquid
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OpenMP speedup
2 OpenMP threads 4 OpenMP threads
1.91 3.6

Table 1. OpenMP speedup on Blue Gerd&For CPMD.

interface 700 atoms , 70Ry). Table 1 shows that the Blue Gehetakes significant
advantage of an MP1/OpenMP hybrid programming paradigm.

3.2 NAMD (NAnoscale Molecular Dynamics)

NAMD (nanoscale molecular dynamics) is a production mdeecdlynamics (MD) appli-
cation for biomolecular simulations that include assemétaof proteins, cell membranes,
and water molecules. In a biomolecular simulation, the lenotsize is fixed and a large
number of iterations must be executed in order to understaacesting biological phe-
nomena. Hence, we need MD applications to scale to thousdipdscessors, even though
the individual timestep on one processor is quite small. N)AMas demonstrated its per-
formance on several parallel computer architectures.

—+—BGI/L VN mode

—a—BG/P VN mode

Step Time [ms]

2 64 128 256 512 1024 2048 4096 8192 16384
Processors

Figure 4. Comparison of NAMD execution times on Blue Gen#/land Blue Gene/P/.

Figure Fig. 4 shows the comparison of times per executiom steBlue Gene/[M
and Blue Gene/P. The application was a 92K atom APoA1 benchmark with PME ever
4 steps. The data for Blue Genéll were taken from a recent paper by S. Kumar et
al5. The Blue Gene/P’ results are very recent and conveyed to the author via privat
communication.

The comparison shows that Blue Gerl@!erforms better for all compared number
of processors. In opinion of S. Kumar, the clock-speed ontpants for a 5% speed up.
The DMA accounts for the rest of the difference.
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4 Summary

Moore’s law might generate the impression that computers/gvith exponential rate in
about every aspect, but there are already some limitatiisitder on the horizon. One way
to evade from the heat and energy trap is to trade low energlydésingle core against high
clock rate. To obtain high application performance out @f docked cores, many cores
have to be thrown at the problem. The IBM Blue G@&hé one example for a system that
follows this concept. The BlueGene systgnirom IBM is shown to provide performance
in a scalable and energy efficient way. Results from NAMD dndlar codes show, how
the system can be used in the area of Computational Biology.
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High Performance Computing in
Multiscale Modeling Cardiac Contraction:
Bridging Proteins to Cells to Whole Heart

John J. Rice

IBM T.J. Watson Research Center, P.O. Box 218, Yorktown hisig\Y 10598, USA
E-mail: johnrice@us.ibm.com

The availability of increased computing with thousands afputational cores enables new
classes of biological models that include detailed repregiens of proteins and protein com-
plexes with spatial interactions. We develop such a modeieinteraction of actin and myosin
in the cardiac sarcomere. The model includes explicit mgrations of actin, myosin, and reg-
ulatory proteins. Although this is not an atomic-scale nhode would be the case for molec-
ular dynamics simulations, the model seeks to represeniabpgeractions between protein
complexes that are thought to produce characteristic @ardiuscle responses at larger scales.
While the model simulates the microscopic scale, when madeilts are extrapolated to larger
structures, the model recapitulates complex, nonlinelaawer such as the steep calcium sensi-
tivity of developed force in muscle structures. The modeljates a plausible and quantitative
explanation for several unexplained phenomena obsenibé &éssue level in cardiac muscles.
Model execution entails Monte-Carlo-based simulationsafkov representations of calcium
regulation and actin-myosin interactions. The model ispotationally expensive and requires
a supercomputer to simulate sub-cellular structures. &Msleful to understand biophysical
questions, such models are obviously impractical to mduebillions of cells that comprise a
whole human heart. We have also developed a more compwhéfiitient model that approx-
imated the spatial interactions at the protein level wittegplicit computation. The goal of this
work is to bridge from cells to large organ-level anatomialictures with practical run times.
We hope that the power of this approximate model to recatéutomplex force responses in
cardiac tissue will foster wider use of cardiac models f@esch and clinical applications.
The work is a case study in multiscale biological modelingerehthe development of a com-
plex, detailed model is required to guide the developmentafe abstract and computationally
efficient representations.

1 Introduction

Many cardiac phenomenon emerge where effects span extpatial &nd time scales. For
example, many cardiac drugs operate on the molecular sdtidesffects on ionic chan-
nels, whereas one wants to understand the effects of thege dn arrythmias and sudden
cardiac death (i.e., the effects at organism and whole teast over a much longer time
scale). Hence, the cardiac field requires models that camlspge spatial and temporal
scale$. The talk presented a body of work around several multiscaldels of contrac-
tion in heart that attempt to represent the system at diftdesels of abstraction. The first
model is a higly detailed representation of the moleculteractions on a single pair of
filaments. This level of detail is required because impdrtamtroversies exist as to the
fundamental molecular mechanisms and how to represere thathematicalf Later,
the single filaments are combined into a larger structurdeda myofibril. The detailed
model also guides the development of abstractions thataampatationally efficient and
based on ordinary differential equations (ODES).

37



(a) (b)

P = Detached and weakly bound

©,

R R sprer

o
e

Resr Rpepsp

\ .
\ z-line ‘ Rever—>r
\

e oo re
= -

F = Post-rotation PreF = Pre-rotation

"

Figure 1. Sarcomere structure in striated muscle. (a) Satiemepresentation of the repeating sarcomere struc-
ture in striated muscle. The sarcomere is defined from zttireline with interdigitated thick and thin filaments
that can interact to produce force. (b) State diagram fasstrodge cycling.

2 Mechanistic Model of the Myofilaments

A detailed representation of proteins and protein comgaexith spatial interactions is
developed to understand fundamental mechanisms in heairtactior?. Here the pro-
teins cannot be tractably modeled on first principles basedtomistic approaches such
as molecular dynamics. Instead, a more abstract formula&iased. Specifically, the in-
teractions of actin and myosin within one pair of thick anuhtfilaments in the cardiac
sarcomere are represented in Fig. 1a. The sarcomere is sieerbpeating of the con-
tractile apparatus in striated muscle. Hence, the modeésepts a small but repeating
structure so that results can be extrapolated to compahnecaihplete muscle responses if
one assumes all sarcomeres act equivalently, an assuntipibis roughly true for some
conditions.

The model includes explicit representations of actin, nyasnd regulatory proteins.
For the sake of brevity, we will will focus on the actin and msjointeractions. The thin
filament is a two-stranded helix of actin (see Fig. 2a). Mgydsas three major struc-
tural subunits - the head, neck and tail. The head attachasitnding site and rotates
using the energy from the conversion of adenosine tri-phatgp(ATP) to adenosine di-
phosphate (ADP) and inorganic phosphatg)(a common energy-liberating reaction in
cells. The tail regions of myosin assemble together to fdrenthick filament (see Fig.
2a). The bound linkages between actin and myosin are conyrtenmhed crossbridges to
reflect bridging between thick and thin filaments. Figure idgs a Markov model for the
crossbridge cycle. Statis a detached crossbridge which corresponds to two biochemi
cal states: completely separate and a transient, eleatimstteraction known as weakly
bound. StatdPreF stands for Pre-Force and corresponds to a more stronglydostate
in which the head has not rotated yet. Rotating the head cattisithe extensible neck
region to generate force as represented by RataF that stands for Post-Force.

The model contains multiple instances of myosin and theesponding binding sites
as adapted from the work of Daniel and colleaguate have used this approach to form
the spatial layout of myosin and actin binding sites with dpgropriate compliances be-
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Figure 2. Spatial arrangement of actinmyosin interactigagMyosin heads on the thick filament have an intrin-
sic spacing of 43 nm, slightly larger than the 37-nm effectpacing of appropriately aligned actin binding sites
on the thin filament. (b) Compliances in the thick and thimfiéats represented as a system of springs between
adjacent binding sites. Attached crossbridges are shovepragys linking the two filaments. Values for actin
binding sites ¢;) and myosins«;) are computed and modeled as a system of linear springstidtotd myosin
head changes stretch of crossbridge spring by 7 nm (seetedéfails).

tween the elements. We assume that the thick filament hasimyeads with appropriate
orientations at an intrinsic spacing of 43 nm, as shown in &3 In real myosin, the heads
extend in a helical fashion such that only a subset will appately align to interact with
the single thin filament assumed in this model. Note, howebeat the 43-nm intrinsic
spacing of myosin is slightly larger than the 37-nm spacihgppropriate binding sites
on the thin filament. Similarly to the case with myosin, théda nature of the actin will
restrict binding to a subset of actin monomers that appatgli face the thick filament in
the two-filament model presented here.

The transition rates between the crossbridge states irlBigre determined by energy
profiles as defined elsewhéreBriefly, the energy profile represent a coupled chemical
and mechanical system so that the energy of the hydrolysAd Bfis assumed to permit
attachment and rotation of the mysosin head. The model sorel to molecular-level
events so both forward and reverse rates are assumed. Esedegiend on the relative
positions of the actin binding siteg;j and myosin ;) for a given pairing. The attached
states PreF and PostF) have a parabolic energy profile that corresponds to a spring
element. The rates may also depend on metabolite condent(&TP, ADP, andF;),
although these are not varied in the current version of thdahoAt each time step in
the Monte Carlo simulation, the state of each interactinig plactin binding site and
myosin are updated. The spatial positions of the sites dcelated by solving the linear
system of springs for the whole ensemble (Fig. 2b shows al subset with only two
pairs). Note that the rotation of the head (from SBieF to PostF) is assumed stretch
of crossbridge spring by 7 nm. Likewise, reverse rotatioan(f StatePostF to PreF)
decreases the stretch. Different intrinic spacing of abtirding sites and myosin will
produce a distribution of relative positions and transitiates. Moreover, the net motions
of the thick and thin filaments that occur during contractiah continually change the
relative spacings actin sites and myosin.

The interaction of actin and myosin is controlled by reguigfproteins that binds cal-
cium (Ca) ions. The regulatory proteins (specifically knagrtroponin and tropomyosin)
reside in the two grooves of the two-stranded actin helix sergte to allosterically block
interactions between actin and myosin. The term "allostegfers to a change in shape
and activity of a protein that results from molecular birglimith a regulatory substance.
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In the lower half Fig. 1a, we represent a single one-dimenisittice of regulatory units
that reside on one of the two grooves. The allosteric shgtlseematically illustrated by
showing some units raised above the thin filament. The inapofeature of troponin is
that it can bind one Ca ion at a single binding site that cdsittee allosteric switching
behavior. The troponin and tropomyosin molecules overtagn end-to-end fashion and
are thought to communicate with their neighbors via thisgidgl communication, a phe-
nomenon called cooperativity. Hence, the regulatory pmeteend to switch on and off in
unison with their neighbors. The communication is critiwaproduce a steep Ca sensitiv-
ity in that a small change in Ca level produces a large chamgetivation level. While
space does not permit more description, the details canurelfelsewhere®.

3 Expanding to Terascale Models

One method of generating multiscale models is to use langgwaters to solve many repli-
cates of the fundamental structure. Along these lines, #s&cbhmodel (one thin filament
and half of thick filament) just described will be expandeg@toduce a model of the my-
ofibril (a common experimental preparation that can be tkskérom cells). Figure 3
shows a possible mapping of 32 sarcomeres onto one rack afea@ne/L. The simula-
tion of two thick and eight thin filaments is executed on a eb@k processor. Each thick
filamentis surrounded by six thin filaments, while each tHanfient is surrounded by three
thick filaments. This gives a filament ratio of two to one, whinust be increased to a ratio
of four thin filaments to one thick filament in order to accofartthe left and right sides of
a sarcomere. Note that the thick filaments are double-enudeguire roughly twice the
computation of the half thick filament in the preliminary nebdWe anticipate a 64-thick
and 256-thin filament to represent a full sarcomere at the [@va computer node card. A
myofibril model can then comprise 32 full sarcomeres modateide level of a full rack of
Blue Gene/L. The mapping is approximate because the findeimgntation may require
some redistribution of the model among computation unithatlevel of processors or
node cards.

One challenge to implement large models on large-scaldl@lacamputers is to effi-
ciently use the hardware in a distributed fashion. One ntktbds to use existing libraries
that allow for distributed processing of sparse matriceg afé using PETSc (Portable,
Extensible Toolkit for Scientific Computatich)To solve for the locations of the binding
sites, the system\ e X = k must be solved at each time step where there is a change in
state of the crossbridge attachment. PETSc provides a o@mtenethod to construct the
sparse matrices and solve the system in a parallel fashion.

4 Approximate Model Based on Ordinary Diffential Equations

We have also developed a more computational efficient mhdeapproximated the spatial
interactions at the protein level without explicit compida of the spatial interactiois

The goal of this work is to bridge from cells to large orgameleanatomical structures
with practical run times. Conceptionally, this approximatodeling can be compared to
coarse-grain methods in protein folding that are develdgediuch more efficient than
atomistic molecular dynamics approaches. However, ond ongerstand and carefully
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Figure 3. Possible mapping of a 32-sarcomere myofibril moda one rack of a Blue Gene/L supercomputer.
Simulation of two thick and eight thin filaments is executedacdual-core processor; then, 64 thick and 256 thin
filaments can represent a full sarcomere at the level of a cade The mapping is approximate because a final
implementation may require some redistribution of the nhad®ng computation units at the level of processors
or node cards, in order to balance computational loadspgiwenmunication constraints. (DDR: double-data-rate
synchronous dynamic random access memory; GB: gigabytesyiGaflops; TF: teraflops.)

weigh the benefits of these approaches as the coarse grajpiaglly trades accuracy and
generality for a faster approximate method that works utidéted conditions.

The method of transferring a model that is spatially expticione that is essentially
a non-spatial point model involves representing the matésracf populations rather than
indivividual elements. Such an approach can be done with aaguracy when the indi-
vidual events are indepedent. For example, populationsd&iendent membrane-bound
channels can be represented in high accuaracy as proiestolitstate cccupancies. In this
way, Markov-state diagrams (similar to that in Fig. 1b) camslated diretly into systems
of ODEs. However, the case is not so simple for muscle in wiielmy of the impor-
tant behavior are thought to emerges from the interactidwdzn neighboring entitiés
The exact method the tranlating to a system of ODEs is giveeméieré ; however, a
brief description is provided here. The ODE-based modalesmts the populations of
crossbridges in the states shown in Fig. 1b. In additionptkan strains of the attached
crossbridge state®PfeF and PostF) are computed using phenomenological formula-
tions. The force is computed at mean occupancies multifdiethe mean stain of the
attached states with the assumption of an ideal spring @onsthis is an approximation
as the real system will have attachment rates and strainsspamding to individual cross-
bridges. Hence, the calculation of the mean values (a amigin often termed "mean
field”) is an approximation that suffices under restrictedditions.

We hope that the power of this approximate model to recagigutomplex force re-
sponses in cardiac tissue will foster wider use of cardiadetsfor research and clini-
cal applications. Indeed, the talk presented some predimiresults in a coupled electo-
meachanical model by Viatcheslav Gurev and Natalia Trayam® The Johns Hopkins

41



University. In the whole heart, the ODE-based model pravittee mapping between
length, shortening velocity, and force during contracti®hile preliminary, the results

illustrates the work required to developed multiscale ni®dan pay off in improved ac-

curacy at larger scales. In this study, the diffences inntgrietween contraction at inside
(endocardium) and outside (epicardium) of the heart coelictbapitulated. Similar results
have not been reported previously with phenomenologicaletiog approaches.

5 Concluding Remarks

The work is a case study in multiscale biological modelingerehthe development of a
complex, detailed model was required to guide the later ldpweent of a more abstract
and computationally efficient representation. The dedait@del seeks to represent spatial
interactions between protein complexes that are thoughitdduce characteristic cardiac
muscle responses at larger scales. We have also developeteacamputationally effi-
cient model that approximates the spatial interactione@ptotein level without explicit
computation. The goal of this work is to bridge from cellsadogle organ-level anatomical
structures with practical run times. We hope that the poviehis approximate model
to recapitulate complex force responses in cardiac tisslidoster wider use of cardiac
models for research and clinical applications.
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A recently introduced physics-based method that expldégadce constraints derived from
Nuclear Overhauser Effect addC® chemical shift data aimed at determining, validating and
refining, protein structures at a high level of accuracyhuiitt resorting to other experimental
data, is illustrated here by determining the native stmestof two proteins, namely a 20-residue
all-3 and a 76-residue ali- protein. The approach makes use'd€ chemical shifts, com-
puted at the density functional level of theory to derive tlaekbone and side-chain torsional
constraints forall backbone and side-chain torsional anglgsamically Consequently, this
method is expected to lead to a more precise characterizaefithe conformational distribu-
tions for the backbone, as well as for the side chains of the@macid residues on both the
surface and in the interior of a protein. With the availabdenputational resources, there are
three main advantages of this new methodology: (a) it cansed ¢or proteins ofiny class

or size; (b) it provides a unified, self-consistent, metHogdy to determine, validate and refine
proteins structures attagh-qualitylevel; and (c) it does not use any knowledge-based informa-
tion and hence, it is a purephysics-basednethod. The anticipated results of our applications
indicated that, starting from randomly generated confdiona, the final protein models are
more accurate than existing NMR-derived models (obtainedding traditional methods) in
terms of the agreement between predicted and obsér@d and 13CP chemical shifts as
well as some stereochemical quality indicators.

1 Introduction

The backbone and side-chain conformations of a residuenfiteeinced by interactions
with the rest of the protein but, once these conformatiorseatablished by these inter-
actions, the'*C® chemical shift of this residue depends, mainly, on its back} and
its side-chaif® conformation, with no significant influence of either the amacid se-
quencé or the position of the given residue in the sequéndhese properties, together
with the fact that'®C® is ubiquitous in proteins, make this nucleus an attractmedsc
date for computation of theoretical chemical shifts at tharqum chemical level of theory
in order to determine, validate and refine protein strusfuteWe have been developing
methodology to usé*C* chemical shifts, in addition to other NMR data, to determine
validate and refine protein structure in solufion

This methodolog; validated on 139 conformations of the human protein uliigui
enabled us to offer a new criterion for an accurate assedsofi¢he quality of NMR-
derived protein conformations and to examine whether XeaMR-solved structures
are better representations of the obsert&@™ chemical shifts in solution. A detailed
analysié of the disagreement between observed and DFT-compéi@tchemical shifts
in these ubiquitin conformations illustrated the accura€yhe calculations and, more
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important, demonstrated that these disagreements réfeedi/namic nature of the protein,
rather than inaccuracies of the method. Our methodologplsaseen usédo show that
neutral, rather than charged, basic and acidic groups aedter tapproximation of the
observed3C® chemical shifts of a protein in solution.

The goal of this work is to illustrate how this methodology €an be used for pro-
teins ofany class or size; i) provides a unified, self-consistent, methodology to deter-
mine, validate and refine proteins structures atgh-qualitylevel; and ¢) does not use
any knowledge-based information and hence, it is a pupblysics-basednethod. To
accomplish this goal, the methodology is illustrated heith wvo applications: first, to
determine an accurate set of conformations that simulisigsatisfies the NOE-derived
distance constraints and th&C®-derived torsional constraints for a 20-residue peptide ca
pable of forming a three-stranded antiparalietheet in aqueous solutigni.e., the BS2
peptide with the sequence: TWIQNGTKWYQNpPGTKIYT, for which complete sets
of both *C* chemical shifts and NOEs were repofte8econdly, as an additional test of
the procedure, we chose to determine the tertiary structutee B. Subtilis Acyl Carrier
(SAC) proteirt. This is a small allx helical protein with only 76 amino acid residues and
no disulfide bonds, for which all théC> and'®>C? chemical shifts and the NOE-derived
distances are available from the Biological Magnetic Rasce Data Bank undercces-
sion number989. The NMR structure of the SAC protein has been solved bbgtal®
using traditional methods, and the coordinates of the gesmainimized structure were
deposited in the Protein Data Bank with the code 1HY8.

2 Materials and Methods

Figure (1) shows a flow chart of the protein structure deteatidn procedure which, es-
sentially, consists of 4 steps, namely:

(1) The Variable-Target-Function (VTF) approach with a sirfigdi soft-sphere poten-
tial function'® is used to generate an ensemble of conformations at randatrsithulta-
neously satisfy a set of distance constraints derived fitarekperimental NOEs and the
backbone torsional constraints derived from thé® conformational shifts, i.e., only for
the regulan-helical ands-sheet segment of the molecule. Among all generated VTF con-
formations, only those possessing a maximum NOE-derivetdmice violation lower than
a certain cut off value, e.g.,,&, are selected. If the number of selected conformations is
greater thanv10, then a clustering procedure is applied by using the Mahi&panning
Tree (MST) methott.

(2) The'*C* chemical shifts are computed at the DFT lévefor each conformation
of the set obtained in step ). The DFT procedure is applied to each amino &cith the
sequence by treating as a terminally-blocked tripeptide with the sequence ASENMe
in the conformation of each generated peptide structurantixation of the chemical shifts
of each residue of all the clustered conformations consitlbere enabled us to identify a
new minimatrmsd modél in which the'>C® chemical shift of each residue individually
best matched the experimental one, thereby providingvaset of ¢, ¢, andy torsional
angle constraints dll the residues of the molecdle

(3) Only one conformation among all the selected conformatiteseribed in stepl(,
was selected. This conformation possessed the lowest reteceen the computed and
observed3C® chemical shifts. The selected conformation was used astingtane in a
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Figure 1. Flow chart illustrating the steps of the compotal procedure, as described in the Materials and
Methods section. VTF is the acronym for the Variable-Tafgatction approadf. The variablet represents the
convergence criterion.

conformational search with the Monte Carlo with Minimizati(MCM)'? method carried
out with two types of constraints: the original fixed set of BKOand theewset of torsional
angles derived in step2). This time, instead of using a simplified soft-sphere paatnt
function, we use a complete force-field containing the feilleg terms: ¢) the internal
potential energy, as described by the ECEPP/3 forcéfieddd () additional energy terms
aimed at penalizing violations of the distance and tordiangle constrainté. Finally, a
clustering procedure is carried out to select a small stilmsthe total number of the
MCM-derived set of conformations by using the MST metHaahd assuming a specific
rmsd cutoff for all heavy atoms.

(4) Steps (2) and (3) are repeated iteratively by using the ssidbrmations obtained
in step (3) and, hence, enabling us to obtaiupdatedset of torsional-angle constraints.
At any stage of the procedure, a tolerance rafigeith 20° < A < 35°, for the torsional
constraints was adopted. Variation of the torsional angiiéisin a tolerance rang4 is
considered acceptable and hence is not subject to enepgetaities. Among all the con-
formations generated in the final use of step (3), only onéxoration is selected, because
it is characterized by the lowest rmsd between the compidtgd chemical shifts and the
observed ones. Thus, the procedure of step 3, applied tcastmhformation, led to a new
set of structures. The final number of conformations in tatssdetermined by the cutoff
rmsd value adopted for the clustering procedure in step (3).

Application of this procedure to 20-residue and 76-residiureins enabled us to de-
termine a Sef3, consisting of 10 conformatiohsand a Sety, consisting of 9 conforma-
tions’, respectively. Analysis of the quality of these sets of comfations in terms of the
ca-rmsd" and some structural quality indicators are given in Table 1.
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Conformation Sét | Carmsd | Maximum Distance Structural Quality
[ppm] Violation© [A] Indicator¢
all-g | Santiveri (20% 4.6 2.36 61+ 11 (39+ 12)[0.0]
Set (10) 3.5 0.88 62+ 10 (37+ 9) [0.0]
all-o 1HY8 (1) 3.9 1.38 95.8 (2.8) [1.4]
Seta (9)° 2.9 0.63 92.04+ 1 (4.3+0.9) [1.5]

Table 1. Results for the ali-and all{3 protein structure determination.

@ Computed for each set of conformations listed; the numbeonformations in each set

is indicated in parentheses. S#tand Seta® refer to the set of conformations determined
as explained in the Materials and Method section.

b Values computed as explained in Vila et'al.

¢ From thefull set of NOE-derived distances, namely 130 for the 20-resalié and
1,050 for the 76-residue adi-proteins, respectively.

4 Based on PROCHECKR. The listed values are the number of residues in the allowed
regions of the Ramachandran map; in the generously alloegidns (in parenthesis); and

in the disallowed regions (in bracket). All the listed vaduexcept for the protein 1HY8,
are averaged over the total number of conformations of estch s

3 Results and Discussion

The results obtained here indicate thatading-sheet (Figure 2a-b) and atl «-helical
(Figure 3) set of structures can be determined by simplytifyémg a set of conforma-
tions which simultaneously satisfy a set of constraintsyelg ' C*-dynamically-derived
torsional angle constraints fail amino acid residues in the sequence, and a fixed set of
NOE-derived distance constraints. Analysis of the acguodthese sets, as a measure of
the closeness with which the calculations reproduce thetstre in solution, in terms of
the NOE-derived maximum distance violations, th€* chemical shifts, and some stere-
ochemical quality factors (see Table 1), indicates thatsalf~consistent physics-based
method is able to produce a more accurate set of confornsdtiam that obtained with the
traditional methods.

In summary, these applications illustrate the three mamaihges of this new method-
ology: (a) it can be used for proteins afny class or size;¥) it provides a unified, self-
consistent, methodology to determine, validate and refioéejn structures at &igh-
quality level; and ¢) it does not use any knowledge-based information and, héise,

a purelyphysics-basethethod.
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(@) (b)

Figure 2. &) Superposition of 20 NMR-derived conformations (représeérby ribbon diagrams) of the BS2
peptide obtained by Santivest af. Side chains are represented by thin black liné$.S@me asd) for the 10
NMR-derived conformations in this work from Sgf .

Figure 3. Ribbon diagram of the superposition of nine modéthe Setafor the SAC proteif (in grey color)
and the minimized average NMR structure (1HY8) [in bl&ck]
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Computer Simulation of Biomolecular Systems:
Where Do We Stand?

Wilfred F. van Gunsteren and Daan P. Geerke

Laboratory of Physical Chemistry, Swiss Federal Instiaft€echnology, ETH,
8093 Zurich, Switzerland
E-mail: wivgn@igc.phys.chem.ethz.ch

The four major aspects that determine the quality of therabieof molecular conformations
as obtained from biomolecular simulation are reviewed #ustiated with examples.

1 Introduction

Over the past three decades, simulation of the dynamicsoofiddecular systems at the
atomic level has developed from short-time simulationsrofpge molecular models [1, 2]
to orders of magnitude larger simulations based on detaildanuch more accurate molec-
ular models [3]. The improved accuracy has turned moleayaamics (MD) simulation
into a standard method for an atomic interpretation of eérpental data on biomolecu-
lar systems [4]. Yet, much progress is still to be made in otdeise MD simulation to
accurately predict various properties of biomoleculatays [5].

Definition of a model for molecular simulation
Every molecule consists of atoms that are very strongly bound to each other

@ Degrees of freedom:
a) atoms are the
@ elemerndary particles
Forces or @ % %
between atoms l Boundary conditions

MOLECULAR
& =)  \opeL
/
® )
Force field = system

physico-chemical temperature

knowledge Methods to generate | B2 [F o8 Blls
. 3
configurations of | (v 8%| 3 external forces
atoms: Newtorn | &

W.F.van Ginsteren/loeich 200508/ 1

Figure 1.
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Figure 1 illustrates the four choices to be made when defiaingplecular model for
molecular simulation: (1) which degrees of freedom are teek@gicitly simulated; (2)
how are the forces governing the motion along these degffefieseniom calculated in a
necessarily approximative manner; (3) how is the motiomefdystem propagated in time
such that the relevant configurational space is widely afficently sampled; (4) how
are the spatial and thermodynamic boundary conditions sagapon the motion of the
system. In this short paper we illustrate the state of theidtrespect to these four aspects
of modelling using examples from our own work.

Conformational Dynamics of Proline Residues in Antamanide:
Effect of continuum versus explicit solvent

‘Ala - 5Phe — “Phe _ X3/ c, \)g

*Pro Pro c c,

| | 5

“Pro 5Pro x\ X,
" 'Val - "Phe - °Phe N—C,

) . ) / 0 N

Experiment: NMR [’CErglgg‘tlon] R.R. Ernst _c

3/8 Pro: rigid Proline

2/7 Pro: 2 conformers (time constant ~ 30ps)
Simulation: stochastic dynamics (500ps) SD

C.umparisun of 33, coupling constants i GROMOS Friction Residence
{in Hz) from NMR Dynamics force field | coefficient time
Rms deviation simulation-experiment 1.5 Hz change ps ps
Pro® Pro® -
m m Experiment w30

afe 85 179 81 8.0 SD mean solvent - 19 3

B, .1 23 09 24

Beve 68 8.7 68 87 SD mean solvent - 1000 25

Bey 120 98 130 97 -

gf.,: 24 22 14 23 SD mean solvent t°{.f_'z; ® 19 25

By 65 86 64 85

Yebe 16 8.7 13 8.6 MD explicit solvent - - 24

veby 21 34 1.5 34

yé 103 7.6 109 7.7

T 85 89 88 88 R.M. Brunne et ai, JACS, 115 (1993) 4764-4768

W F.van Gonateren/Jueich 200508/2

Figure 2.

2 Choice of Degrees of Freedom

In Figure 2, the importance of explicitly including solvetggrees of freedom is illustrated.
It compares the puckering residence time of {hetorsional angle of residugsro and
"Pro in the cyclic polypeptide antamanide as obtained fropegrent [6] with that as
obtained from simulations using either a mean implicit eahf7] or explicit water solvent
molecules [8]. Using stochastic dynamics (SD) simulatidgtha friction coefficient of 19
ps~!, typical for water at room temperature and pressure, thkgring rate is ten times too
high compared to experiment. Using a mean solvation modaelitd only be reduced by
either using an artificially high friction coefficient of 10@s™! or by artificially increasing
the torsional barrier by about 2.5 kJ mdl These unjustified changes in the molecular
model can, however, be avoided by explicitly simulating Weter degrees of freedom,
which results in the correct puckering rate (see Figure 2).
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Free Energy of Solvation in Water

amino acid analogues (polar)
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Hydrophobic hydration (argon) in
water-ethylene-glycol mixtures
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Only polarisable models reproduce the experimental trend

W F.van Gunateren/ueich 200508/

Figure 4.
3 Choice of Interatomic Interactions

In Figure 3, it is illustrated that the free energy of aquesolsation of the side chains
of polar amino acid residues is insufficiently negative fome widely used biomolecu-
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lar force fields [9], which would lead to incorrect partitiog between polar and apolar
solvents and would over-stabilize folded protein struetufherefore, more recent force
fields, such as the GROMOS 53A6 one [10], lead to a better ightisar of the folding
equilibrium [11].

Figure 4 illustrates that inclusion of atomic polarisalilwill be essential to reach
an improved level of accuracy, i.e. beyond 1 kJ mél The experimentally observed
non-linear behaviour of the free enthalpy of solvation afaar in water-ethylene glycol
mixtures as function of the ethylene glycol mole fractiomigy reproduced in MD sim-
ulations using polarisable molecular models (COS modefsgreas a more or less linear
behaviour is obtained when using non-polarisable mod& [Qalculation of the solute-
solvent entropy of solvation shows that the non-lineastyn entropic effect, which cannot
be modelled using a mean or continuum solvent model.

Sufficient sampling of conformational space ?
Use of different starting structures and
temperatures

Atom-positional root-mean-square deviation from 2.5,,-P-helix

A 293K, Biue from E)fténtlen, green from 2.5‘2—"-#'\5'\\*

2.5,,-P-helix is 35% populated at 340 K and stable at 298 K,
but not found at 298 K starting from an extended structure

W F van Gunsteren/Juelich 200508/

Figure 5.

4 Sufficient Searching and Sampling of Conformational Space

In Figure 5 itis illustrated that even 100 ns of MD simulata@fran eight-residug-peptide
in methanol at room temperature may be insufficient to findrbst stable 2.5-P-helical
fold [13]. Starting the MD simulation at 298 K from this hadicstructure shows a low
root-mean-square deviation (rmsd) from this fold, whemsasting at 298 K from an ex-
tended conformation the helical structure is not populatétl 340 K the sampling of
conformational space is much widened: a large number ofdldifg events is observed
and the helical conformation is present 35% of the time. €k&mple illustrates the need
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for search and sampling enhancement techniques, of whgrd=6 classifies the most
important ones [14].

Techniques to enhance the searching and
sampling power of simulation methods

1. Deformation or smoothening of the potential energy surface

a. omission of high-resolution structure factor data in structure refinement based on ¥-ray
diffraction data

b. gradual introduction of longer-range distance restraints in variable target structure
refinement based on NMR NOE data

=) saftening of the hard core of atoms in the non-bonded interaction {soft-core atoms)

d. redluctlon of the ruggedness of the energy surface through a diffusion-equation type of
scaling

. avaiding the repeated sampling of an energy well through local potential energy
elevation or conformational flooding

f. softening of geometric restraints derived from experimental (NMR, X-ray) data through
tirme-averaging of these

g. circurmvention of ener S barriers through an extension of the dimensionality of the
Cartesian space (4D-MD)

h. freezing of high-frequency degrees of freedom through the use of constraints

i coarse-graining the model by reduction of the number of interaction sites

2. 8caling of system parameters

a. temperature annealing

b. tight coupling to heat bath
[ mass scaling

d. mean-field approaches

Multi-copy searching and sampling

a. genetic algerithms

b, replica-exchange and multi-canonical algorithms
[ cooperative search: SWARM

Review: 7. Comput, Chem, 28 (2007) 157-166

W VAN Gy (el 2005086

Figure 6.

5 Choice of the Appropriate Thermodynamic State Point

Figure 7 illustrates the effect of pH on the folding equilibin of a seven residué-peptide
in methanol [15]. The only protonisable groups of this pegtivith aliphatic side chains
are the amino- and carboxy-termini. The backbone atomtipoal root-mean-square de-
viation of the MD trajectory structures from the most stafiieth computationally and
experimentally) 3;-helical fold shows that only if the protonation state cepends to the
experimental pH, the helical fold is the most populated one.

6 Conclusion

We have briefly illustrated that the following factors areesstial to obtain a high quality
ensemble of molecular conformations in a molecular sinat

1. Inclusion of the relevant degrees of freedom: solventa@msdolvents.

2. Use of a thermodynamically calibrated force field, wittobvent model that is com-
patible with the solute one, and possibly inclusion of piskility.

3. Sufficient and Boltzmann-weighted sampling of confoiiovel space.
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pH Dependence of the Folding Equilibrium
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Figure 7.

4. Use of the appropriate (experimental) thermodynamie gtaint and spatial boundary
conditions: temperature, pressure, pH, ionic strengtfsateents, etc.
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1 Introduction

Among various available computational methods, free gngirgulation technique [1-7],
based on molecular dynamics or Monte Carlos simulationsnigque; this is, if simu-
lation time permits and energy potential is reasonably @teuit can ultimately lead to
guantitative predications of free energy values corredpanto the processes of interest,
in particular the binding processes involving drugs anaptiologically relevant agents
because this method is built upon solid statistical mea®itieories. Unfortunately, with
the present computing power and in particular the stativefart free energy simulation
algorithms, reaching adequate simulation time for nice faergy convergence, is still
quite challenging.

Facing such challenge and also great opportunity, we hame ipetivated to consider
solving these problems. One of our recent developmentsjtindated scaling (SS) based
method [8], shows intriguing efficiency and robustness. Jihaulated scaling based free
energy simulation method originated from stepwise geiriadns of the simulated tem-
pering method. Specifically, at the first step, the tempeeagpace random walk in simu-
lated tempering was generalized to be the potential scakmgmeter space random walk
based on the modified potentidl: = AU, + U., where the original energy potentidy, is
decomposed t&/; andU,, and the scaled energy potential represents the energy terms
determining the local conformations of a region of inter&@stereby, the developed algo-
rithm, named by us as the simulated scaling method, alloead kampling to be enhanced
in the conformational region described by. In order to realize simultaneous improve-
ment in phase space overlap sampling for free energy sironsatwe further generalized
the SS method and made it coupled with the dual-topolog\eafitel free energy simula-
tion setup. Via this generalization, both phase space apeadmpling and conformational
sampling problems can be synergistically dealt with. Asudlsed in our early work, the
SS method can also be employed with the single-topologysetwhich A and B share
the same set of coordinates; in this setup, conformaticaralpting problem cannot be
ensured as robustly as in the dual-topology setup.

In the following sections, we will describe the SS based #rergy method and its
extension in the simulations based on quantum mechanitahials.

2 Simulated Scaling (SS) Method for Localized Enhanced Santipg

For a system with the potentiély, = Us + U., whereU, represents the energy terms
determining local conformations in an interested regioth &n represents the rest of en-
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vironmental energy terms. Usually, because of the existehtarge energy barriers, con-
verged traveling among various energy minima via regulaoo&al sampling is time-
consuming, sometimes even impossible within currently paoter-reachable simulation
timescales. To overcome this problem, we can build an exgtadsemble with the scaled
potentialU = \,,U, + U., where the dimensionality of the system is extended to 3N+1
(N is the number of real particles) with an additional onerelnsion dynamic species, .

The canonical traveling in th&,, space can be realized via hybrid Monte Carlo method
[9]. Based on the constructed scaled potential, an accepaobability for a move from

Ao to A\ can be set as

pgcpt[(/\o — A1)] = min{1, exp[~B[MUs + Ue) — (AU, + Ue)]]}

= min{1, exp[—B(A\1 — A\o)Us]} = min {1, exp [ ﬁA/\g—(/ﬂ } (1)

in which energy derivativé;,% is equal toU, and scaling parameter change\ is equal

to (A1 — M\o). In this way, the moves in thg,,, space will allow possibly efficient barrier
crossing, detoured through the path with decrease from 1 (effective lowering the energy
barriers), barrier crossing (with lower energy barriess)d \,,, increase (returning to 1).
However, the probability distributiop(),,,) in the \,,, space is determined by the,,-
dependent free energy profile (potential of mean forcelghoess of which very possibly
hinders an efficiend,,, move. In order to make &,, random walk possible, as discussed
in last section, a weight functian(\,,,) can be introduced to flatten the, distribution by
the application of a biased acceptance probability

phiased[(\g — Ay)] = min {1, exp ( BAA —) Eiimﬁ }
- (Ao)
_mm{l,exp< BAX a) f(M)}’ (2)

inwhichexp[a(\,,,)] is defined as biasing probability functigii),,, ). Thereby, the weight
functiona()\,,,) can be recursively updated with the modificationfdh,,,). Specifically,

in order to efficiently flatten tha,,, histogram, the updating scheme in the Wang-Landau
algorithm [10] is adopted here. When each timk,astate is visited after a Monte Carlo
acceptance judgment, we update the corresponding biasabglpility functionf (A, ) us-

ing a modification factoy > 1, i.e., f(\) — f(A\n)/f. The initial modification factor

fo can be set as a large value in order for the system to quickly afl the \,,, states,
defined in a certain rang@.min, Amax)- This large modification factofy is kept till \,,,
random walk results in a “flat” accumulated histogr&hg\,,,). It is noted that the “flat-
ness” judgmentis based on a criteria of whether all the actated histograms/ (\,,,) are

not less than a large percentage (80% is often used in the \AM@amdgu multi-canonical
algorithm) of the average histograf® (\,,)). Then before the next round of,, ran-
dom walk, this modification factof is reduced to a finer one, updated by a monotonically
decreasing function (herg.; = +/f; is used) and? ()\,,) is reset to zero. Following
this procedure, a number of cycles will be run continuoudilyite modification factor is
extremely small. In the present development, we can als® aakariation by switching
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Figure 1. (a) Torsional potential for the “butane-like” raclile used in model system 1. Black curve represents
the unscaled potential for this “butane-like” moleculesldéine represents a scaled potential. (b) Time evolution
of during the simulation. (c) Dihedral angle change with pnegress of simulation.

this modification factorf to be 1 when it is smaller than a pre-set cutoff value in order t
obtain meaningful non-history dependent ensemble. As Wdllwstrate, the present sim-
ulated scaling algorithm shows superior updating effigjgn@btaining converged weight
functiona(\,, ).

lllustrative Example: A “Butane-Like” Molecule. It only has bond, angle and di-
hedral terms in its potential. Bond and angle terms of thitemde are treated with the
CHARMM “Butane” parameters as, term. Its dihedral term is set as a double-well po-
tential: 30(1 + cos(2x)) kcal/mol, which has a high energy barrier (60 kcal/mol) aod s
almost exclusively only &,,, tunneling mechanism (Figure 1a) can enables jumps between
the two energy wells at 300 K. Here, the dihedral potentitd aslU, term, which is scaled
by A,.. In the simulated scaling method, facilitated by,g random walk, such barrier
crossing is guaranteed, as shown in Figure 1c, through @limgrmechanism (Figure 1a);
this tunneling mechanism [11] is realized by at least thgdisteps of moves in the ex-
pended coordinate system:\g, decrease (solid arrow), physical energy barrier crossing
in low \,,, potential (dash arrow), and)a, return (solid arrow).

3 Free Energy Simulations with Synergistic Localized Enhaoed
Sampling Treatments

In the improvement of the free energy simulation technigoesformational sampling and
free energy convergence (even independent of conformatsampling) are two major is-
sues, although these two issues have been mainly discussediependent topics. There
is lack of discussion on how to efficiently deal with these fwvoblems simultaneously,
which is required to quickly and reliably obtain the free myyedifferences (i.e., rather
than the precise pseudo-converged values correspondicertain trapped local confor-
mations).

Usually, an enhanced sampling method is designed to effigiehtain the ensemble
information on certain target physical states. Severadssmry states (such as the ones
with varied temperatures or Hamiltonians) can be introduceefficiently propose the
structures (to effectively cross the energy barriers) iertarget state sampling. Conven-
tionally, the measure of the “conformational sampling”@écy is purely based on the
results from the obtained target state ensembles. Howtbeesiccessory states can be use-
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ful intermediate states to provide decent phase spaceapgio bridge the two end target
physical states for the free energy evaluations. Therefoeerealize that in contrast to
the “conformational sampling” problem, the sampling dadigr the free energy simula-
tion also requires careful consideration of the accesdatg €nsembles. For free energy
simulations, the sampling strategy should be designed tithspecial concern in mind,
because various “conformational sampling” methods may kiéfferent level of efficiency
in providing an appropriate set of the accessory state dnissrfor the evaluation of the
free energy difference.

Based on the above thought, an approach is proposed towaodgdals: robustly
enhanced canonical sampling, for which the accessory stestembles are designed, and
simultaneous quick free energy convergence, facilitajettié decent phase space overlaps
provided by these accessory ensembles. Specifically, wmpeoa dual-topology alchem-
ical simulated scaling (DTA-SS) method, hexg plays double roles, viz. 1) as the label
of the intermediate state to improve the phase overlap atomglchemical direction; and
2) synergistically as an effective temperature label tca@ak the SS sampling efficiency.

Theoretical Design of the MethodThe scaled energy function can be rewritten in the
dual-topology hybrid potential form, which is usually i#éd in free energy simulations,
as shown below

U= (1-\)ULE) + AU (@) + U, (3)

wherelU# () andUZ (') represent the unique portions of the energy terms for thetvdo
point chemical species A and B. It should be noted that Eqnaican also be expressed
in a nonlinear form, such as in the form of the soft-core pidés. Therefore, Equation 3
can be generalized as

U= f(&,a',\) + U, 4)
in which we have the constraints ¢{z, #/,0) = U2(Z) and f(Z,',1) = UB(2') to
recover the chemical end states; the scaled portions havediependent coordinatés
andz’ , the corresponding potentials of which are scaled in thesip@directions. Here,
for simplicity, the discussions will be based on the lineae oEquation 3. As mentioned
above,\ and(1 — \) become the labels of the local effective temperatures cuoitaat
with their roles as the potential scaling parameters in tiigiral alchemical free energy
simulation design. In this case, the SS algorithm can silhpplied, except that here, the
energy derivativ@j% is equal ton‘(:E’) — UA(%), when Equation 2 is applied. Conse-
quently, when the\,,, histogram is flattened, free energy difference between\aoyt,
states can be naturally obtained according to the follokangula

f(Xo)

wherea(\,,) and f(\,,,) respectively represents the weight function and biasimndar
bility function values. And the time evolution of this contpd free energy is expected to
behave like in Figure 2b.

Technically, it is very difficult to reach the absolute flatedor the),, histogram in
order to apply Equation 5, because with the histogram flattetihe modification factof
becomes smaller and its capability to flatten dhehistogram is correspondingly reduced.
A revised procedure can be used by turning the modificatictofg to 1, after it is smaller

AA(Ng — M) = —RT[a(\;) — a(Xo)] = —RT'In (f(A1)>, (5)
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Figure 2. (a) Model potentials set to compute the free endiffgrence between two “butane-like” molecules.
(b) Time evolution of rough free energy, estimated basedaqmEon 5.

than a pre-set cutoff value. When the modification fagtas 1, the biasing probability
function f (\,,,) will be constant thereafter and all the ensemble propettytations based
on the cumulated histogradi (\,,) are statistically meaningful. Therefore, theoretically
exact alchemical free energy value can be estimated usiniglliowing equation:

— gy [ O HO)
AA(N — A1) = —RT1 <f()\0)H()\o)>’ 6)

wheref (\,,) is the biasing probability function value far,,, when the modification factor
f is turned to 1; andZ(\,,) is the corresponding accumulated histogram value, counted
after the modification factof is turned to 1.

lllustrative Example. For the purpose of demonstrating a simultaneous sampling en
hancement accompanying free energy simulation in this oteth model system is set to
compute the free energy difference between two end poimhictads with the dihedral po-
tentials ofU' = 12{1 + cos[¢ + 110°]} + 20{1 + cos(2¢)}. As shown in Figure 2a, these
two potentials are symmetric with two asymmetric energylsvehch. Correctly obtain-
ing free energy difference between these two butane mascgthieoretical value of which
is zero, is very challenging, because existing energy é&arare not trivial to be crossed
by thermal activations. By regular canonical ensemblermeats, computed free energy
difference was yielded to be 22.47 kcal/mol, which is eqoathe difference between
global minimum of one molecule and local minimum of the oth&s shown in Figure
2, because it can simultaneously enhance sampling, DTAmS8ation allows rough free
energy value, estimated based on Equation 5, to reach tlomrefgzero kcal/mol in 2.5 ps
and evolve to be 0.2 kcal/mol with small fluctuation in aboippk. Finally, after totally 1
ns simulation, based on Equation 6, exact free energy imat&d to be 0.09 kcal/mol.
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4 Hybrid Potential Space Random Walk to Robustly Realize
QM/MM Based Simulated Scaling Simulations

The generalized ensemble algorithms can be robustly apdiéhe systems treated with
classical energy potential functions (or called molecutechanical (MM) potentials),
which are usually described as the sum of a series of geordepgndentfunctional energy
terms, because in these types of potentials, energies caobbstly evaluated regardless
of structural qualities, and chemical space is restrigtpdé-determined by the definition
of atom types and connectivities. However, direct applicadf these generalized ensem-
ble methods to the simulations treated with quantum mechaf@M) potentials (pure
QM potential or its hybrid with molecular mechanical potah(QM/MM)) can be prob-
lematic and sometimes almost impossible in commonly ag/fiigte-time-step molecular
dynamics settings, for the fact that the convergence ofdliecensistent-field (SCF) cal-
culation for QM energy evaluation is very structure-sawsjtit can be more demanding
than the requirement for the ordinary differential equatioopagation stability in molec-
ular dynamics simulations. If generalized ensemble allgans are directly applied in the
QM-based (QM or QM/MM) simulations, instantaneously tetsmolecular structures, in-
evitably generated due to high temperature (or high effe¢temperature” corresponding
to a low scaling parameter value) activations, may make electronic structural SCF cal
culations difficult to converge or artificially converge tther electronic structural species
(effectively like the occurrence of chemical reactions)thAugh facing such challenge,
the increasing demands of accurate calculation of freeggnelues urgently require ro-
bust and efficient QM-based free energy simulation methau®rder to reconcile such
confliction between a necessary activation (either by exireg temperature or lowering
scaling parametex) and the structure-sensitivity nature of QM calculatiomse of pos-
sible solutions is to avoid direct walking between the attd MM states (with low\
values or high temperatures) and the state requiring QMggreerd force calculations in
the simulated scaling method design.

Theoretical Design of the MethodFollowing the same thought in one of our recent
works [12], we can design the following hybrid traveling [pdtom QMO to MMO, then
from MMo to MM1, and the from MM1 to QM1, instead of a simple patcaled by
one scaling parameter as introduced in one of PI's previeusldpments. In this hybrid
potential space, two end points are our target QM/MM statesthe center path from
MMO to MM1 is the same as our classical potential based sitadlacaling method.

In this scheme, we need to realize a random walk in a hybrid dher than a single
street. To do so, all the equations in the simulated scaliethod can still apply, except for
the expression o%% in Equations 1 & 2. The values % depend on which portion of the
path the simulation is currently located in. If the simwdatis in the path starting at QMO
and ending at MMO, this value should be equaltg »/0 —Ugso; if the simulation is in the
path starting at MMO and ending at MM, this value should bhea&tp U1 — Ung o if
the simulation is in the path starting at MMO and ending at M iis value should be equal
to Ugari — Unmar . As noted earlier, Equations 1 & 2 are based on linear scalijugtion.
As the matter of fact, any nonlinear scaling potentials carapplied to the simulated
scaling simulations. Then, these equations can be easdjfie. In the original simulated
scaling method implementation, soft-core potentials men successful included, tested,
and even employed for practical biomolecular studies.

62



20 = ]
E

= - 0.5+ h
E 15+ (5] 4
g f 4.0
| & f
H 5 asd | | I
=] = f
= By w 1 |i‘ I \
E 1 o 20 (e
g o o 1 ' | | kL rL| 'P‘.
E A o 254 II ¥ —
= 5 T 4 \ 1‘,1
e E & LL| ‘nj|| hl
E @ /
5 10 it W
w 354

-

T T T T T T T 40 T T T T T T T
0 500000 1000000 1500000 2000000 2500000 3000000 o 500000 1000000 1500000 2000000 2500000 3000000
Simulation Time (fs) Simulation Time(fs)
(a) (b)

Figure 3. (a) Time dependent free energy difference betweethanol and methane in gas phase; (b) Time
dependent free energy difference between methanol ancaneeth the solution.

lllustrative Example. A model system is set to compute the solvation free energy
difference between methoal and ethane. Here, QM/MM pakwts employed; the so-
lutes are treated with the SCCDFTB method and the solvergentds are treated with the
TIP3P model.

As shown in Figure 3, QM/MM based solvation free energy défece value can be ef-
ficiently predicted for methanol and ethane. The prediabdehsion free energy difference,
-7.2 kcal/mol, reproduces experimental values nicely.
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Protein-Ligand Docking Including Protein Flexibility:
A Hierarchical Approach

Iris Antes, Christoph Hartmann, and Thomas Lengauer

Max-Planck-Institut fiir Informatik,
Campus E1 4, 66123 Saarbriicken, Germany
E-mail: antes@mpi-inf.mpg.de

To describe protein-ligand interactions realisticaltyisinecessary to account for the structural
changes in both the receptor and the ligand during complerdtion. However, in classi-
cal docking approaches the receptor is treated either afygemi-rigid. We developed new
program, DynaDodk which allows full flexibility for both, the ligand and the @eptor dur-
ing docking. For this purpose we combined two new method€£d8 (Iterative REduction
of Conformational Spac&)and OPMD (Optimized Potential Molecular Dynamics), whioh t
gether allow an efficient sampling of ligand and receptorf@onations.

1 Introduction

The major application for protein-ligand docking is the eleypment of new drugs for
efficient and safe treatment of diseases. Molecular dockiathods developed for this
purpose are very efficient approaches, which are specyfidaligned for rapid identifica-
tion and characterization of protein-ligand interactiofise main application area of these
methods is virtual screening. Virtual screening placelsttigPU time constraints on the
applied methodology due to the enormous number of potedriig molecules to be tested
(around 100.000 to 1.000.000 molecules). Due to these timstaints one very rigorous
approximation is commonly used: the structural changesdnméceptor upon ligand bind-
ing are neglected. However, for a growing number of targetcsires receptor flexibility
is crucial. Thus the efficient treatment of protein flexilyilduring docking is one of the
major challenges within the field.

2 Methods

2.1 IRECS

The most commonly used methods for an efficient treatmentefchain flexibility dur-
ing docking are discrete optimization approaches basedeaxtefined side chain rotamers,
like e.g. ensemble methods (e.g. FIéxBue to the large number of possible side chain
conformations at the receptors binding interface, thes&idg approaches often face the
problem of a combinatorial explosion if all possible sidaichconformations are consid-
ered. Thus itis crucial to preselect a small number of flexdidle chains in the binding site
for which alternative conformations are used. IRECS waglbg@ed for this purpose. Itis
a new tool for side chain placement, which is especiallptail to the needs of molecular
docking. In contrast to other side chain placement toolschvpredict the same number
of conformations (mostly one) to all side chains of the prgteur tool is able to predict

65



an ensemble of the most probable conformations for eaclchaia of a protein. The rela-
tive numbers of rotamers that are assigned to each side cha@spond to the side chains
flexibility. The abolute level of flexibility can be defined Ilye user as the final rotamer
density (average number of rotamers per residue in theipjai€the output structures.
Thus IRECS leads to a minimal, flexibility optimized set ofdiing site side chain con-
formers. The predicted side chain ensembles can be useds$embdle based docking
(FlexE). The typical application areas of IRECS/FlexE anggddesign projects for which
a relatively fast algorithm is required and for which a déterapproximation of side chain
flexibility is sufficient.

2.2 DynaDock

Although the number of target structures for which molecdlacking can be performed
increases considerably by the use of discrete, rotamediikeséble docking approaches,
there are several limitations of these methods for whichatisfying solution has been yet
found. The main restriction is that backbone movement cacobsidered only to a very
limited extent. Another limitation is that, to be efficiemaugh, a rather coarse grained
definition of the conformations must be used. Thus induceeffiiicts upon ligand bind-
ing, which are too small to lead to new side chain confornmatidout are necessary for
successful binding, are not considered. Last but not laligtpcking methods still have a
sampling problem if the number of the rotational degreeseddom to be considered is
above a certain limit. Thus efficiently docking a very larfiexible ligand into a flexible
binding site is still a challenge for the field.

We have developed a new docking algorithm, DynaDock, whscksipecially suited for
such cases. DynaDock combines discrete search algoritomsifio- and cheminformat-
ics with continuous biophysical simulation methods. Thdenying idea behind the algo-
rithmis to first perform a flexible ligand-rigid protein daok on the basis of a modified in-
teraction energy function, which allows for overlappingnfmmations (can be performed
with IRECS). These conformations are then refined by reggittie correct physical in-
teraction energy landscape during a fully flexible simolatof the whole system. For
this purpose a new simulation method was developed, Orfotential Molecular Dy-
namics (OPMD), which allows for an efficient molecular dynesrbased sampling of the
conformational space of both the protein and the ligand.cbBmebined DynaDock-OPMD
algorithm leads to a mutual adaptation of the 3D shapes ofighaed and the protein’s
binding pocket.

3 Results

The performance of IRECS was evaluated on a set of 160 crytstadtures of proteins.
First, final structures were predicted with a rotamer dgresifual one, i.e. with a single
conformation per side chain. This corresponds the outputlodr side chain prediction
programs. The results were compared to two other side-graitiction tools, SCWR%L
and SCAP. IRECS achieved g accuracy of84.7% and ay;,» accuracy of74.3%,
using a40° cutoff. The average side chain RMSD from the crystal stngstwas 0.78
A. This is comparable to the performance of SCWRk; = 82.3%, y1+2 = 68.0%, av.
RMSD = 0.85A) and SCAB (1 = 84.0%, x142 = 80.6%, av. RMSD = 0.8A).

66



Figure 1. (a) A helix (chain B, position 69-80) of human UD&agtose 4-epimerase (PDB: 1EK6). The side
chains predicted with IRECS are red, the side chains of thetalrstructure are blue. (b) Average number of
rotamers assigned to the different amino acids in the finatttres predicted by IRECS (rotamer density of 2).

In addition, final structures with a rotamer density of tworevpredicted and the av-
erage number of rotamers per amino acid type was analysexbeTtumbers (Figure 1b)
correspond very well to the internal flexibility of the inddwal amino acids. Thus the
ensembes of side chain rotamers assigned by IRECS are enfatdge for the internal
flexibility of individual residues.

The DynaDock method was tested on a set of 20 X-ray structingstein-peptide com-
plexes obtained from the PDB database. The structures \Wwesen to cover a wide range
with respect to the peptide’s length (3 to 11 residues) andltface exposure (20 to 60
%). Starting with randomly disturbed peptide conformatiansund the binding site with

a peptide RMSD larger than 34 we were able to obtain refined structures with RMSD
values smaller than 2.8 for all complexes in our test set using the OPMD approach.
Analysing the RMSD of the lowest energy structures, it waseobed that also these val-
ues were smaller than 24 for 11 cases and only one case was aboveaa.ﬂamely 3.5

A. These are very promising results, especially consigettiat also the longest peptide
(11 residues) could be refined to 148
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Membrane electroporation is the method to directly tranisieactive substances such as drugs
and genes into living cells, as well as preceding electiofusAlthough much information on
the microscopic mechanism has been obtained both fromiexgetrand simulation, the exis-
tence and nature of possible intermediates is still uncléare, we investigated the equilibrium
effect of external electric fields on the membrane structine effect of membrane-embedded
proteins on the stability of membranes, and the kinetichefdlectropore formation process,
applying molecular dynamics simulations.

The results show a quadratic change of the membrane capaitdth the applied voltage, and
a significant stabilization of membranes by proteins. Fectebpores, an average pore radius
of 0.47 + 0.15 nm was obtained, in favourable agreement with conductaregsurements and
electrooptical experiments of lipid vesicles. A linear degency of the activation energy for
prepore formation on the applied field is seen, with quait@éaagreement between experi-
ment and simulation. The distribution of preporation tireaggests a four state pore formation
model.

1 Introduction

Membrane electroporation (MEP) is nowadays an establisbelthique to render cell
membranes porous and permeable by applying electric ptdseslls in suspension, ad-
herent cells, and tissue. Historically, the structuralaegt of MEP has been derived from
functional changes such as cell death, the nondestrudéetre-release of intracellular
components from isolated organelles, and the functionalctielectro-uptake of naked
gene DNA into mouse lyoma cells. MEP is widely used for theciffit direct electro-
transfer of all kinds of bioactive substances, in particdlaigs and genes, not only in cell
biology and biotechnology but also in the new medical disegs of electrochemotherapy
and electrogenetherapy used e.g. for vaccination or in RidAsfection. Other electro-
porative phenomena such as electrofusion of cells or eliesrtion of xenoproteins by
nonpermeabilizing electroporation pulses at low voltagiesintrinsically coupled to the
structural changes induced by MEP.
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Despite major experimental and theoretical efforts, seEprestions remained unanswered
so far: for example, an intermediate on the way to hydroppitres has been proposed and
tentatively been assigned a hydrophobic pore on the bakisetic measurements. Also,
conductance measurements on planar lipid bilayers shdveeeikistence of a nonconduc-
tive prepore state. However, in molecular dynamics (MD)udations such a hydrophobic
pore has not been observed. Accordingly, the structuréifes of such an intermediate
are still unknown. A second issue is that no attempt has besterso far to quantita-
tively relate the pore formation times observed in simolatito measured pore formation
kinetics, such that up to now the simulations have not begorausly validated against
experiment.

2 Methods

Bilayer patches composed of 128to 512 POPC (DOPC) lipidesnded by explicit water
were studied. Larger systems were required for the studgwifibrium effects and of a
stable electropore. Force field parameters for the lipidewaken from Bergéror from
Siu et al’. All simulations were performed at full hydration, for 5-@@s. lons were
considered for the study of membrane capacitance changes external electric fields as
well as for studying a stable electropore.

3 Influence of Electric Fields on Membrane Capacitance

The influence of external electric fields on the membraneaitgrae was studied apply-
ing external electric fields of 0.1—-0.4V/nm across a DOP@yt. In experiments, a
guadratic increase of membrane capacitance with the memlp@tential was described:

—

-

o
T

Figure 1. Membrane capacitance changes as a function
of the potential drop across a lipid bilayer. The solid
line displays the experimentally obtained quadratic be-
havior, the blue diamonds results from MD simulations
applying external electric fields of varying strengths

* * across a DOPC hilayer. The hilayer contained 256
0.0 1.0 , 2.0 lipids, the phospholipid force field was derived from
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Membrane capacitance changes obtained using the recen#ioped generalized all-atom
force field based on Amber (GAEFfor DOPC are in very good agreement with the ex-
periments. We suggest this modified membrane state withaaeased area per lipid and
differentially tilted lipid head groups for both lipid leafs as an intermediate state to pre-

pore formation.
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4 Influence of Gramicidin on Membrane Stability

Large potential drops across biological membranes occeady by small charge imbal-
ances. Our results obtained in simulation studies of a DNMR@icidin system suggest
that gramicidin considerably suppresses membrane epesdormatiofi. Pore formation
times were increased at least by a factor of three.

20

ure DMPC - po
OP P
A/DMPC — pore
A9 p
A GA/DMPC — pore not for

> 1 Figure 2. Pore formation times observed in
1 MD simulations for a pure DMPC lipid bi-
] layer (black diamonds) and for a mixed gram-

pore formation time (ns)
o
T

o A

5 A icidin/DMPC system (black triangles, gram-

< 1 icidin in DH conformation) at two different
5F A 1 field strengths (0.3 and 0.35 V/nm). Small

8 8 ] gray symbols denote the simulation lengths of

o ] further simulations in which pore formation

could not be observed. The total simulation

0.25 0.30 0.35 040 {ime exceeds 120 ns.

external electric field (V/nm)

5 Kinetics of Electropore Formation

Comparison of prepore formation rates obtained from 50 kitimns at varying field
strengths with experiment allowed to estimate the averageber of lipids involved in
electropore formation to 140. From this result one woulddmtethat pores are sepa-
rated typically by approximatelynm. The radius of stable electropores was estimated
to 0.47 & 0.15 nm from a simulation with properly adjusted external eledield®. Pore
formation is preceded by two intermediate steps: (1) glif lipid headgroups, coupled
to an increase in the lipid area; (2) prepore intermediateluing 2 —5 lipids.
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Sedimentation velocity experiments reveal informatioouttmolecular weight and shape of
sedimenting macromolecules. The observables in suchiexpais are the sedimentation and
diffusion coefficients and the concentration of individsalutes. We have developed parallel
optimization algorithms that allow us to extract molecylarameters from mixtures of macro-
molecules using a nearly model-independent approach.gldszombination of deterministic
and stochastic optimization, we are able to fit complex ditally ultracentrifugation experi-
ments globally with excellent convergence properties. €iitware uses the TIGRE grid mid-
dleware to distribute the computing effort to Teragrid atiteo computing resources, and offers
a public web portal for the hydrodynamic analysis of AUC akpents. Our solutions pro-
vide unparalleled resolution, and allow us to charactepalymerization events, aggregation
and provide high resolution information in structure anddtion studies in the solution state.

1 Introduction

The sedimentation and diffusion transport of a solute olezkin an analytical ultra-
centrifugation (AUC) sedimentation velocity experimest described by the Lamm
equatiod. Mixtures of solutes can be modeled well by a linear combamaof finite
element solutions of the Lamm equatidhwhere each term represents a different solute
in the mixture. The sedimentationy) and diffusion coefficientsi?,) are parameters of
the Lamm equation, and define uniquely the molecular weigttshape of each solute
k in the mixture, while the amplitude of each term determiresgartial concentration
(cx). In an AUC experiment the goal is to correctly determind, ¢ as well asn, the
number of solutes present in the mixture. The inverse prohié fitting experimental
data to simulations of Lamm equation systems representf@uttioptimization problem
which is nonlinear with respect to the fitting parameters. pkesent here a method
for evaluating experimental data by applying multiple optiation algorithms in series
for obtaining the most likely parsimonious parameter thstion that satisfies Occam’s
razor. Our approach is implemented on a parallel computiatfgpm utilizing the
globus-based TIGRE grid middlewdrevhich can be conveniently accessed through a
web portal. Results can be further analyzed with the UlteaSoftwaré ’. Our approach
includes algorithms for initialization, systematic nobeconvolution, parameter search
and parsimonious regularization.
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2 Initialization

The parameter search requires an initialization step widiehtifies the limits of the do-
mains of two of the fitting parameters, andD. If the experimental data contain signif-
icant amount of time invariant systematic noise, thiémits are conveniently identified
with the time-derivative method by Stafford, which yieldmadel-free transformation of
the primary data that eliminates any time invariant noisetrgoution$. A more accu-
rate initialization can be obtained from the experimentdhdy the enhanced van Holde
- Weischet methatj which yields a model-independent, diffusion-correctedismentation
distribution for cases where time invariant noise is nohgigant. Accurate limits forD
are difficult to obtain reliably by model-independent meaarsd require prior knowledge
and parameterization by the frictional ratj;

Dy,

sV

_ RT [2(1—ip) : _2
= 187TN[ = ] (M frk) 1)

where R is the gas constanf, the temperature in Kelvin)V is Avogadro’s numbery
andp are the viscosity and density of the solvent, apds the partial specific volume of
solutek. Values forf, are chosen based on the analyte under investigation, fonpea
1-2 for globular macromolecules, 1.5-3 for disordered aradered proteins, or values up
to 10 for elongated molecules such as long nucleic aciddsfioramyloid aggregates. For
unknown systems a sufficiently large range can also be chbgeim those cases additional
refinement steps may be required.

3 Time-Invariant Noise Reduction and 2-Dimensional Spectrm
Analysis Parameter Search

The precision of parameter estimation is inversely coteelavith the experimental noise
present in the primary data. It is therefore important tlygtematic noise contributions
resulting from instrument flaws are accounted for and thathetstic noise contributions
are attenuated using Monte Carlo (MC) meth8d$Ve have shown that systematic noise
contributions can be effectively eliminated using algébnaeans!. Experimental design
considerations can further improve noise characterjstizsexample, by using intensity
measurements instead of absorbance measurements, stoobe is reduced by a factor
of ~ /2 by not subtracting the reference signal. This subtractads to the convolution
of two stochastic noise vectors and an increase in the stchmise. In the first optimiza-
tion step we perform a 2-dimensional spectrum analysis éatvthe limits determined
above in section 2 as described by Brookes ét.a8riefly, a divide and conquer algorithm
is employed to search multiple coarse-grained subgridsrspg the entire 2-dimensional
parameter range inand f,.. Each grid point is an element in a linear combination of fi-
nite element solutions of the Lamm equation, whose am@iaie determined in a least
squares fit using the non-negatively constrained lineast leguares (NNLS) fitting algo-
rithm?3, By combining the results from multiple relatively coargidg that are slightly
offset against each other, a high-resolution, 2-dimeradispectrum analysis (2DSA) is
obtained. The result is a sparse matrix identifying potgsignals in the sample.
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4 Parsimonious Regularization of the 2DSA Grid Using Geneti
Algorithms

After performing the 2DSA analysis, a sparse grid identifypotential solutes is obtained.
However, due to the presence of experimental noise and dilne tdegeneracy resulting
from fitting with an overdetermined system the result is sabjo the presence of false
positives. While such effects cannot be entirely elimidateparsimonious regularization
can improve the solution significantly by providing a sadutthat satisfies Occam'’s razor.
Occam'’s razor states that the solution with the greatesirpany of parameters resulting
in nearly the same residual mean square deviation (RMSDpather less parsimonious
solution is to be preferred. We have implemented a secompdistdne optimization pro-
cess which takes advantage of a genetic algorithm (GA) agproln this approach, we
initialize the GA analysis with parameter constraints oi#d by drawing 2-dimensional
boundaries with user-defined width around each solute. |@y&between adjacent boxes
are eliminated by further subdividing existing boxes taateenew, non-overlapping boxes.
During fitting, parameters are adjusted in an evolutiongapreach based on fitness:

fitness = RMSD x (1 + (rf * nz(x))g) (2)

wherenz is the cardinality of solution: andr f is a regularization factor applying RMSD
penalties to increase parsimafy

5 Global Multi-Speed Genetic Algorithm Monte Carlo Refinement

In order to enhance the information content of AUC experitsetiata from multiple ex-
periments performed at different speeds can be combinedylotal fit. In high speed
experiments, sedimentation signals are enhanced, in leedspxperiments diffusion sig-
nals are improved. GA-MC analysis can be performed gloliaflgonstraining the solute
model to all datasets. Table 1 lists results from a simulatedmponent system with het-
erogeneity in both shape and molecular weight (realistissmadded), representing a linear
elongation event, performed at both 20 krpm and 60 krpm.

Solute Molecular Weight (kD) Partial Concentration Foctal Ratio, f/fO

1 24.26 (24.20, 24.33)[25]  0.0972 (0.0966, 0.0982) [0.1]2141.21, 1.21) [1.2]
2 48.04 (47.74,48.46)[50]  0.102(0.101,0.104)[0.1] 1120, 1.42)[1.4]
3 100.2(97.96,101.8)[100] 0.0995 (0.0982, 0.101) [0.1] 651.63, 1.67) [1.6]
4 198.0(194.2,200.8)[200] 0.0996 (0.0989, 0.101) [0.1] 84X1.82, 1.86) [1.8]
5  385.3(380.4,394.0)[400]  0.100(0.100,0.101)[0.1] D99, 2.04) [2.0]

Table 1. GA-MC results for a global fit of a multispeed 20/6@rkrexperiment (described in text). The results
demonstrate remarkable agreement with the target. Pass#h95% confidence intervals; square brackets: target
value. All values rounded off to 3 or 4 significant digits.
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The free energy surface (FES) of three Poly-Alanine pegtisiexhaustively reconstructed by
using metadynamics. A specific collective coordinate hanhetroduced to account for the
hydration of the N- terminal region of alpha-helical comf@tions. Calculations suggest that
Poly-Alanine peptides mainly populate unfolded statedertstingly FESs exhibit different
properties among peptides thereby providing some hintsaotorfs determining the confor-
mational preferences of short Poly-Alanine sequences.rddvbe calculations evidence the
efficiency of Metadynamics in exploring free energy surgéagebiological relevant molecules.

1 Introduction

Biological macromolecules have typically access to a wigectum of conformations.

Such a dynamical behavior, essential for solving the biclidunctions, is connected to
a complex free energy surface (FES). With the growing poveatrulators and the con-
tinuous refinement of force fields, molecular simulationgizeen increasingly employed
to address for relevant biological topics. In this scenaridemand for innovative tools al-
lowing for an efficient exploration of the FES has pushed lierdevelopment of a variety
of novel methods. Herein, to reconstruct the FES of polyidept we employ a method
- Metadynamics - recently introduced by Parrinello and atwcs' and successfully ap-

plied to a large variety of scientific problems from physiechemistry and biology. As

test case, the FESs of small Poly-Alanine peptides are sanpl

2 Methods

Metadynamics performs an efficient exploration of multidimional FES by means of
collective coordinates (CVs) and a history dependent igigjeq.1):

Fa(s,t) = /O dt'W exp (_%) 1)

The dynamics in the space of the CVs is guided by the free grdriipe system plus
the history-dependent potential which sums Gaussiansdihwli and weightW centered
along the CVs trajectory up to tinte(for further details seg. Herein, we employed three
different CVs. The first is the gyration radius calculatedioe C-alpha atoms of the pep-
tide. The second is the root mean square deviations of tlegichhangles compared to an
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ideal alpha-helix. Finally, to account for the conformatbstability of helical conforma-
tions, we biased the hydrogen bonds that the 4 N-terminalues make with water (see
discussion). The latter CV is accounted with the followingnula:

4 nr.Waters 1— (Ti,—Tj )6

—d (2)
z; ; L= (=)

with dg = 0.22 nm and the running on the amide hydrogen atoms of the first four residues
of the peptide (representing the N-terminal loop of an iddstha-helix) and the running

on all the acceptor oxygen atoms of the solvent. We simuliee: poly-Alanine peptides
oflength 9, 14 and 19 (PolyA PolyA; 4 and PolyA , respectively). The simulations have
been performed by using GROME#%A which is a metadynamics module developed to
run in association with GROMACS, and GROMOS 53A6 forcefidlde system has been
accommodated in a dodecahedron box with periodic boundarglitons. The box has
been filled with SPCE water molecules. Peptide N- and C- mehmoieties have been
modeled as uncharged. Non-bounded interactions have kesgad by using a cutoff for
Van der Waals (1.4nm) and PME for long-range electrostateractions (mesh spacing
0.125 nm). The dynamics have been simulated in the canagnisaimble, coupled with a
Nose-Hoover thermal bath. The equilibration procedureldess performed as in Ref. 2.
For each peptide, simulations have been carried out for 8@msng by an ideal alpha-
helical conformation.

3 Results and Discussion

We performed exhaustive metadynamics runs of PgJy?olyA;, and PolyAg with par-
ticular focus on the N-terminal hydration, for which a spiecCV has been written. In-
deed, the latter is known to be one of the possible stratéigégsiature adopts to stabilize
alpha-helices To improve the sampling convergence in meaningful regafrtee FES,
the weight W has been rescaled according to the Well-Terdmineamics. This allowed
us to monitor convergence of the samplings. The 3D FES ofRp(iFig. 1) evidence that
this peptide is unable to sample alpha-helical conformatiodndeed the peptide essen-
tially populates unfolded states featured by a large thistion of gyration radiuses. The
sampling evidences a minimally populated beta-hairpitestad an ensemble of kinked
states, mainly featured by a central Hbond promoting a teta-This result is in a good
agreement with a recent NMR stutlyOn the other hand, the larger PolyA(Fig. 2)
and PolyAq (not shown) are able to marginally explore alpha helicalaeg, Notably,
by passing from 9 to 14 and 19 Alanine residues, the distdhutf gyration radiuses is
dramatically affected with longer chains showing prefeeefor collapsed structures (see
1D projections on CV2 in Fig. 1 and 2). It is very likely thaettendency to adopt more
collapsed structures is a first step toward the formatioregtilar secondary elements as
shown by the mild exploration of alpha-helix and a largerydapion of beta-hairpins. It
is worth nothing that it was not possible to fully test the heimtroduced N-terminal hy-
dration CV since the simulated peptides are not properly ebpopulate the alpha helical
structures. However, it is likely that for more helical peps this CV would efficiently
help the convergence of the Metadynamics sampling. Futeweldpment will focus on
alpha-helical peptides for which a detailed thermodynanaied kinetics description is
available in literature.
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With Brownian dynamics (BD) we study the mechanism and keseaif association of neamine,
an aminoglycosidic antibiotic, and its proposed derivatwith the ribosomal A-site RNA. We
compare the performance of different antitibiotic modedediduring BD simulations.

1 Introduction

The aminoacyl-tRNA site (A-site) in the 30S bacterial ribogl subunit is the binding site
for most aminoglycosidic antibiotiésBinding of aminoglycosides interferes with transla-
tion and causes the decrease of its fidéli#kthough used in medical therapy, antibiotics
from this family suffer from moderate affinity, inadequapesificity and may cause dam-
age to mammalian and kidney cells. Also, bacterial resigtdimits their effectiveness in
medical therapy. Therefore, different theoreticilnd experimentél’-8 approaches are
applied in order to understand their binding mechanism #odte to improve their selec-
tivity and efficiency are being made. We believe that for arglgicosides’ inhibitory role,

it is not only important how strong are the bound complexdsi¢tvis usually one of the
criteria applied during computer-aided drug design prexbst also how fast they can be
formed. Therefore, we applied the BD technique to examisedbages of binding of the
neamine and designed by us model compound (Figure 1). Neadeirivative was pro-
posed during a two stage screening procedure which utiizgtetarmacophoric search for
possible binding modes, followed by a binding affinity esttian (Piotr Setny, unpublished
results). The antibiotic target used in BD simulations igrmasmetric RNA oligonucleotide
containing two ribosomal A-sit€gFigure 1). In our recent wofkwe studied association
of various aminoglycosides with this RNA fragment. In thiady improved models of
antibiotics are used in an attempt to validate previoudt®su

2 Methods

2.1 Brownian Dynamics Methodology

BD allows one to simulate the diffusional motion betweeriatting solutes and compute
diffusion limited rate constants of their association. Tigand is represented as a poly-
mer composed of spherically symmetric subunits, with @ytassigned partial charges,
diffusing through the electrostatic field generated by &péor. Ligand’s motion can be
derived using Ermak-McCammé&tpropagation scheme:

At
n+l _ n E n on
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Figure 1. Left: Atomic structures and bead models used in Bfizamine (top) and its derivative (bottom). Blue
beads correspond to amine groups and bear chardes Green beads are neutral. Right: A-site RNA duplex.
Secondary structure of the asymmetric unit (containingAsée). Adenines 1492 and 1498.(Colinumbering)
are displaced upon binding of an antibidtiBase pairs are represented witrand — (corresponding to three or
two hydrogen bonds, respectively) for Watson-Crick paird @for non-Watson-Crick pairs. Three dimensional
structure of the RNA duplex (blue and orange) with the A-siceupied by neamine (shown as van der Waals
spheres); A1492 and A1493 are denoted in magenta.

where indice$ and; run over coordinates af subunitg1 < i, j < 3N), r; is the position
vector componentt; is the sum of intersubunit and external forces acting inatiioa 7,
integern represents discrete times= nAt at intervalsAt, D;; is the diffusion tensor, and
R;(At) is a random vector whose average is zero ant; (At) R;(At) >= 2D At. In
BD, a ligand moves in the potential generated by fixed, rigiceator, and obtained from
the solution of the Poisson-Boltzmann equatfoon the 3D grid. External forces acting
on the ligand are computed as a sum of exclusion and eleatiogtrms. To estimate
association rates, a large number of BD trajectories is igé@@ Each trajectory begins
with the ligand placed randomly on the surface of the sphétenadiusb. In a simulation,
the ligand either diffuses outside the sphere with ragiiwghereq >> b) and the trajectory
is truncated or forms an encounter complex with the recepatisfying some predefined
reaction criteria. The ratio of the number of reactive rijees to their total number
allows one to estimate the association rate constant

2.2 Brownian Dynamics Simulations Setup

The coordinates of the symmetric RNA fragment (Figure 1hwito paromomycins bound
at A-sites were taken from the Protein Data Bank (code 9JParomomycin coordinates
were used as a template for positioning the neamine and modgdound within the A-site
and to establish reaction criteria defining the encountemtex. We represented neamine
with 13 and its derivative with 18 spherical subunits (bgad3eads were centered on
atoms of antibiotic’s rings (Figure 1). Aminoglycosidesr&shown to bind to RNA in
their fully protonated staté thus we assigned a total net chargetdfe to both molecules
(distributions of partial charges are shown in Figure 1)gdnd and RNA hydrodynamic
parameters were derived from their all-atom structuresguie procedure described pre-
viously*. Resulting translational diffusion coefficients aré - 10‘6@ for neamine and

3.5- 10—6% for its derivative. Electrostatic calculations and BD slations utilized the
University of Houston Brownian Dynamics (UHBH)and are described in Ref. 4.
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3 Results

10_1T
rate constant- error[10°° ;]

I[mM] neamine model compound
150 2.42 +0.03 1.87 £ 0.03
200 2.22 +0.04 1.67 £ 0.03
250 2.10 +0.04 1.48 £0.03
300 1.86 +0.04 1.25+£0.03

Table 1. Association rate constants and their dependen@mninstrength derived from BD simulations. Error
values are estimated at the’®@@onfidence level.

Rates of association and their dependence on ionic streargtishown in Table 1.
Neamine, which is smaller than its derivative diffusesdasFor both antibiotics a rather
weak dependence of computed association rates on ionig#trés observed. The de-
crease in association rates upon change of ionic strengthast 23; for neamine and
about 33% for its proposed derivative. Both molecules bear the sarhéoted charge and
the observed difference arises from different distritngiof partial charges (as the total
charge of neamine is distributed in smaller volume).

In our previous study; we represented neamine with a much simpler, two-bead model
The observed decrease in association rate upon changiitgsivength from 150mM to
300mM was about% and computed association rates had slightly higher valuesore
detailed 13-bead model used in the present study probaliigrbreproduces the effects
arising from the distribution of partial charges, thus &arghanges in neamine’s associa-
tion rates with ionic strength. Nevertheless, the influesidenic strength on the binding
kinetics is rather insignificant in both cases.

Previously, we observed that aminoglycosidic antibiosiide along the RNA groove
prior to binding. Simulations with detailed antibiotic neld for neamine and its derivative
reveal similar behavior.

4 Conclusions

We applied BD to determine the association rate constanteafmine and its proposed
derivative. The compounds were modeled with an increasetheuof beads in compari-
son to our previous studyResults obtained by describing aminoglycosides withgustv
and over 10 beads showed comparable mechanisms of the éeicoamplex formation,
similar magnitude of association rate constants but seodgpendence on ionic strength
with a more detailed description of antibiotic.

Acknowledgments

We would like to thank Piotr Setny for providing us the atomiodel and parameters
of the neamine derivative. The authors acknowledge sugpmort University of Warsaw

83



(115/30/E-343/S/2007I1CM BST1255, 115/30/E-343/BST1B2AM2008, G31-4), Polish
Ministry of Science and Higher Education (3 T11F 005 30), &tglnternational Center
(RO3 TW07318) and Foundation for Polish Science.

References

1. F. Walter, Q. Vicens, E. WesthoAminoglycoside-RNA interaction€urr. Opin.
Chem. Biol.3, 694-704, 1999.

2. J. M. Ogle, V. Ramakrishnagtructural insights into translational fidelityAnnu.
Rev. Biochem74, 129-177, 2005.

3. G.Yang, J. Trylska, Y. Tor, J. A. McCammainding of aminoglycosidic antibiotics
to the oligonucleotide A-site model and 30S ribosomal sith&nisson-Boltzmann
model, thermal denaturation, and fluorescence stydidgled. Chend9, 5478-5490,
2006.

4. M. Dlugosz, J. Antosiewicz, J. Trylsk&ssociation of aminoglycosidic antibiotics
with the ribosomal A-site studied with Brownian dynamic€hem. Theory Comput.
4, 549-559, 2008.

5. T. Hermann, E. WesthdRocking of cationic antibiotics to negatively charged petsk
in RNA folds J. Med. Chem42, 1250-1261, 1999.

6. A. C. Vaiana, E. Westhof, P. AuffingeA molecular dynamics study of an
aminoglycoside/A-site RNA complex: conformational andré&tation patterns
Biochimie88, 1061-1073, 2006.

7. D. -H. Ryu, R. R. RandoAminoglycoside binding to human and bacterial A-site
rRNA decoding region constructBioorg. Med. Chem9, 2601-2608, 2001.

8. P. Pfister, S. Hobbie, C. Brill, N. Corti, A. Vassela, E.sitiof, E. C. Bottger,
Mutagenesis of 16S rRNA C1409-G1491 base-pair differastibetween 6’0OH and
6'NH; aminoglycosidesl. Mol. Biol. 346, 467-475, 2005.

9. Q. Vicens, E, WesthofCrystal structure of paromomycin docked into eubacterial
ribosomal decoding A-sité&Structured, 647-658, 2001.

10. D. L. Ermak, J. A. McCammomBrownian dynamics with hydrodynamic interactions
J. Chem. Phy89, 1352-1360, 1978.

11. M. K. Gilson, B. Honig,Calculating electrostatic interactions in biomolecules:
method and error assessmeit Comput. Chen, 327-335, 1987.

12. S. H. Northrup, S. A. Allison, J. A. McCammoBrownian dynamics simulations
of diffusion influenced bimolecular reactignks Chem. Phys30, 1517-1524, 1984.

13. C. M. Barbieri, A. R. Srinivasan, D. S. PilcBeciphering the origins of observed
heat capacity changes for aminoglycoside binding to prgaetic and eucaryotic ri-
bosomal RNA A-sites: a calorimetric, computational, anghosc stress studyl. Am.
Chem. Soc126, 14380-14388, 2004.

14. J. D. Madura, J. M. Briggs, R. C. Wade, M. E. Davis, B. A.\LWA. llin, J.
Antosiewicz, M. K. Gilson, B. Bagheri, L. R. Scott, J. A. Mc@eon,Electrostatics
and diffusion of molecules in solution: simulations witle tniversity of Houston
Brownian Dynamics prograpnComput. Phys. Commu1, 57-95, 1995.

84
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Some of the emerging goals in modern medicine are to uncbeenblecular origins of human
diseases, and ultimately contribute to the developmengwftherapeutic strategies to rationally
abate disease. Of immediate interests are the roles of matestructure and dynamics in
certain cellular processes leading to human diseases anability to rationally manipulate
these processes. Despite recent revolutionary advaneapénimental methodologies, we are
still limited in our ability to sample and decipher the stural and dynamic aspects of single
molecules that are critical for their biological functiofhus, there is a crucial need for new
and unorthodox techniques to uncover the fundamentals faular structure and interactions.
We follow a hypothesis-driven approach, which is based toriiag simplified protein models
to the systems of interest. Such an approach allows sigmifjcextending the length and time
scales for studies of complex biological systems. Here veerilze several recent studies that
signify the predictive power of simplified protein modelghin the hypothesis-driven modeling
approach utilizing rapid Discrete Molecular Dynamics (D)\dimulations.

1 Introduction

Despite the multiple innovations in the field of moleculanslations, the size of biological
molecules and complexes and the time scales at which thejidmremain unreachable to
traditional computational approached his roadblock hallmarks the principal challenge
in computational structural biology and is the subject af@wrent research.

To circumvent the problem with reaching biologically-redat time and length scales,
one must simplify a biological system to elements, esskotaregime of interest. For ex-
ample, if we are interested in large-scale motions of pnsteccurring at the milliseconds
to seconds time scale (e.g. protein folding), it is ofteregafeliminate atomic vibrations
occurring at time scales of picoseconds. Such time scaleugdiog is an important ma-
neuver that has been utilized in molecular dynamics siriaulat However, despite such
innovations as world-wide distributed computing and hardewcustomized molecular dy-
namics, the time scales reachable by these sophisticatbdigeies are still limited by
microseconds time for relatively small systems.

Developed in 1959 approach Discrete Molecular Dynamics [DAhas a philosophi-
cally different event-handling scheme, which makes it@xiely efficient. The algorithm
is based on satisfying the same basic physical principlésadi&ional molecular dynam-
ics. However, instead of integrating equations of motionte@rating time~ N3, where
N is the number of particles), DMD engine searches for colfistvents (search time
~ N log N). This difference makes DMD speed by far more superior tditinal algo-
rithms. With developed all atom force field MeddsBMD simulations allow to extend
visible simulation range to microseconds simulations. t\wxe will describe applications
of DMD engine and Medusa force field to studies of protein iftddand modeling, and
demonstrate various biotechnological applications.
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2 Protein Design and Evolution

Studies of known proteins have revealed the intriguing g&oization of their sequences
and structures. Proteins with sequence similarity highant25-30% usually adopt
a similar structure and are called homologs, while thosé Watv sequence similarity
(<20%) can share the same structure and are referred as @hal®lge origin of such
co-organization has been the topic of extensive discussiothe protein folding, design
and evolution communities, since an understanding of thergemce of homologs and
analogs in the protein universe has broad implications anability to rationally ma-
nipulate proteins. We developed a molecular modeling arsigdemethod, Medusa, to
computationally design diversified protein sequencesdbatspond to similar backbone
structures. It is these backbone structures that detenpnatein fold family. Using protein
design, we directly demonstrated the formation of distprotein homologs within a spe-
cific fold family when the structure deviates only 1JA2away from the original structufe
The study suggests that subtle structural changes, whipeeamglue to accumulating mu-
tations in the families of homologs, lead to a distinct pagkof the protein core and, thus,
novel compositions of core residues. The latter procesisleathe formation of distinct
families of homologs. This work was important in two waysrsiy, we demonstrated
that using protein design we could mimic the formation oféléremely complex protein
universe. Secondly, we developed a new force field that esald to design proteins and
predict protein structure when coupled with the rapid DMBugliations technique.

3 Protein Design and Biotechnology

Mutagenesis is a central tool of molecular biology, gersetimd biotechnology. Knowing
to what extent mutations affect the thermodynamic statalitd structures of proteins is of-
ten vital for designing experiments. Estimation of protgtiabilities remains a paramount
challenge in computational molecular biology. We exteniiediusa to a novel method-
ology, Eris fttp://eris.dokhlab.org ), for accurately predicting the mutation-
induced protein stability change® Due to the complex nature of the interactions in-
volved in protein folding, existing stability predictionathods often use empirical param-
eters trained on experimental protein stability data, Whitakes these methods highly
dependent upon the training databases. Limited by theialmltfy to model the struc-
tural changes induced by mutations, the applications ofltveloped methods are often
restricted to mutations from large residues to small ones. adtiressed these deficien-
cies with a unique approach that combines a physical fortbdigd a fast conformation-
sampling algorithm in an atomic framework of proteins. Wewsed that Eris could effec-
tively detect and resolve the atomic clashes and structtams introduced by the muta-
tions and yield reliable predictions of the stability charfgr these mutants. We expect
Eris, which is freely accessible through our server, to fep@ications on a broad range
of mutations in the course of protein engineering. In fae have already used Eris to de-
sign a peptide to a cysteine-rich intestinal protein onelaR which has been identified
as a novel marker for early detection of cancers. The dedigeptide binds to CRIP1 at
Kg ~ 3uM in vive®. Our all atom DMD models now feature Medusa force field, which
offers a new automated technology for rational protein eegiing and conformational
exploration.
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4 Protein Modeling

The deletion of the single residue Phe-508 in CFTR presentd@% of cystic fibrosis
patients prevents maturation of CFTR in endoplasmic rietrauWhile this mutation does
not significantly affects the structure and thermodynaroifcthe nucleotide binding do-
main’s (NBD1) where it resides, clearly Phe-508 deletiosrudts tertiary interactions
with other domains. The lack of CFTR’s 3D structure hampensumderstanding how
mutation affects channel’s both tertiary organization antttion. Using homology mod-
eling and DMD/Medusa simulations, we constructed a thieeedsional model of CFTR
structuré. We have further validated the structimevitro by testing the residues’ proxim-
ities in our model via engineered disulfide bonds betweeaede®sidues. We found that
Phe-508 mediates a tertiary interaction between the suda®BD1 and a cytoplasmic
loop (CL4) in the C-terminal membrane-spanning domains Ehiicial cytoplasmic mem-
brane interface, which is dynamically involved in regudatof channel gating, explains the
known sensitivity of CFTR assembly to many disease-astmtrautations in CL4 as well
as NBD1 and provides a sharply focused target for small nutésdo treat cystic fibro-
sis. In addition to identifying a key intramolecular sitelie repaired therapeutically, our
findings advance understanding of CFTR structure and fometnd provide a platform for
focused biochemical studies of other features of this umijlP-binding cassette (ABC)
transporter family ion channel.

5 Concluding Remarks

All atom DMD simulations with Medusa force field allows us terform redesign protein
structures with flexible backbone algorithm, which in tuempits evaluation of the impact
of mutations on stabilities of proteins. Furthermore, dmgpDMD with Medusa allows
one to improve the homology models and refine the structures.
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Many protein families involved in protein-protein intetian (PPI) contain sub-families that in-
teract with different protein binding partners. We haveliggpthe Sequence Harmony method
(SH), which is able to detect specificity sites from a multiplgwence alignment (MSA) con-
taining sub-families. The input was a dataset of MSAs ofraaténg protein families, each
time containing a set of non-interacting paralogous secgen Exploiting the differences in
sequence conservation between the binding and non-birgtimgps bySH, we demonstrate
that predicted specificity residues turn out to reside orptiséein surface. We also show that
we can select interface residues with approximatel§; coverage (true-positive rate) 2t %
error (false-positive rate).

1 Introduction

Specificity is a critical ingredient in regulation and siting processes in cellular systems
and it is most often achieved by recognition between spquifiteins. Detection of speci-
ficity residues is most often used to pinpoint functionaldess in general,however, if
the functional difference is based on protein-proteinratéons (PPI), specificity sites can
actually correspond to the interface region.

We will attempt to identify PPl interface regions from prioteequence using the previ-
ously introducedsHmethod for detection of subtype specific sitesThe general scheme
of our approachis shownin Fig. 1, and is based on the avkitjadii data on interactingA-

B) and non-interacting4-B’) paralogs. The first step is the detection of a non-intemgcti
ortholog B') to one of the interacting protein8(in this case). Second is the addition of
orthologs to both the interacting and non-interacting @irst, and finally the selection of
specificity residues using this pair of paralogous groupsbfologs.

Figure 1. For a pair of interacting proteind-B) we find a non-interacting homolog{, no interaction withA),
and orthologs of the interactoB) and non-interactorg’). Specificity residues for these ortholog groupsvé
B’) are putative interface residuesf Analogously, we select putative interface residues&dusingA’ that
does not interact witl8), which can be matched up to form the interface betwéemdB.
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2 Methods

2.1 Homolog Detection

Experimental PPI evidence is based on the sum of sociogffnores from Gavin et &l.
and Krogan et at, as proposed by Van Noort et@lWe took a score above a threshold of
4 as interacting, and below as non-interacting.

For paralog detection, wdlast each interacting proteinB) against thenr
database wittentrez _query=Saccharomyces cerevisiae We find the first
non-interactingprotein @), ordered according to the blast score (most similar fir&.
filter the hits by sequence length of le&8% of the query. For the ortholog search, we
use the same rationale as for the paralog search but now thenigungi database, and
retain one hit for each of the firdt) organisms (so, at mosb different organisms). For
these hits, we require the length to be betwg@r and140% of the interacting protein, a
bit-score of> 50 and ane-value of< 1071°.

2.2 Protein-Protein Interaction Specificity

The basis of the interaction specificity residue detect®the selection of specificity
residues usin@gH. These selections are further filtered using simple rulsgdan group
and combined entropies.

For the SH method, sequences are taken from an input alignment andasega
into user-specified groups. Th8H score for two groupsA and B is calculated as
SH = % (Sa+s — Sa — Sg), using the group entropieS (= — > plog p) and combined
entropy over the columnS(y 1 = — > (pa + pg)log (pa + pr)), Where the sums are
over all residue typesSHvalues range from zero for completely non-overlappinghesi
compositions, to one for identical compositions. Furthetads on the method were de-
scribed previously:®’

Our dataset contains heterodimer complexes & cerevproteins of size0 or larger
for which pPDB files are available, and the analysis included all 2 chains. Interface and
surface residues were identified usMGMS

Interface  Surface  Criterion Description
69.6% 50.2% Sp < Spr more conserved in interactor
9.8% 30.7% Spr < Sp less conserved in interactor
10.1% 10.2% Sayp =0 conserved
34.3% 192% Spr—Sp >0.3 much more conserved in interactor
9.5% 7.4% Sp=0 and S =0 and SH =0 conserved in group but not between
48.9% 52.1% Say+p > 0.4 variable (non-conserved)
61.8% 67.0% Sayp > 0.4 within Sgr — Sp > 0.3  variable within conserved interactor
and Sp < 0.3
21.2% 129% Sa+p > 0.4 and S — Sp > 0.3 variable and conserved interactor
and Sp < 0.3
42.3% 33.8% SH <0.2 specific (low harmony)
28.9% 17.9% Sp < Sp, and SH < 0.2 conserved interactor and specific
17.8% 13.4% S —Sp>03 and SH <0.2 more conserved interactor and specific

Table 1. Behaviour of residues at the interface and at theféise surface (non-interacting part) in termsSH
and group 64, Sg) and overall § 4+ ) entropies.
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3 Results and Discussion

We have observed (data not shown) that our predictions aresensitive to a propor
selection of paralog and ortholog sequences. Particuldudgyprediction quality depends
on the distance between the interacting protein and itsim@nacting paralog.

3.1 (Non-)Interacting Paralogs

Our selection procedure was set up to identify non-intérggiaralogs based on specific
blast -searches. We observed, however, that less tbhgpercent of all paralogs found
were actually interacting. This opens the interesting ibdiy of applying our approach
without the support of (high-quality) data oon-interactionwhich in general is much less
reliable thaninteractiondata. This could be done on a much larger scale from available
genomic sequence data and high-throughput PPI screens.

3.2 Surface and Interface Properties

Previously, we had already observed that specificity resicare predominantly located
at the protein surfaée’. Since interface regions obviously are on the surface ak wel
we therefore analyzed the selection of surface residudseirctirrent dataset. We used
SH < 0.3, Sg < 0.3, andSp — S > 0.3 and find that betweeil % and95%, on
average36% =+ 8, are at the surface.

From the properties listed in Table 1, we can make a detaibedparison between
interface residues and other surface residues (non-acExfWe see an enrichment on the
interface of residues with entrog (interacting) lower tha'z, (non-interacting), which
is 70% over50%. This ratio becomes bigger if the entropy difference is biggi% over
19%. Also low-harmony sites are somewhat more prevalent omtieeface. Conservation
and variability seem to be equally distributed betweentitface and rest of the surface.

3.3 Selecting Interface Residues

From the observed statstics, we will now derive some rulegste selection of inter-
face residues. First of all. the entros\z (interactina) should be lower thasiz: (non-
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Figure 2. ROC curve (TPRs FPR) for selection of interface residues from differeréstion criteria.
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interacting). This is true fof0% of interface residues, and f84% the difference is even
bigger ¢ 0.3). In addition, theSHscore should not be high for a residue that is critical for
interaction with the partner, but it also is not necessamlgy low (42% with SH < 0.2).

In Fig. 2 we show a ROC plot for a set of different combinatiohselection parame-
ters,cf. Table 1, going from relaxed to more stringent. We can obtany high coverage
(90%), but at relatively high error60%). Lowering the error rate goes sharply at the cost
of coverage, and the lower half of the ROC curve even goeswbttle line expected for a
random selection (where FPRTPR).

4 Conclusion

We have shown that subtype specificity can be used as a towlgoipt interface residues.
However, care should be taken in selecting the paralog ahdlog proteins. Neverthe-
less, the trends we observed will be helpful in the furtheettgoment of protein interface
prediction. In addition, our analysis yields some insighfsossible evolutionary selection
mechanisms that have helped shape protein interfacespyaherfs our understanding of
specificity of protein-protein interactions.
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The genomes of some viruses encode small membrane proteicis are known to alter mem-
brane permeability by forming ion conducting pores. Theration of the electrochemical
gradient as a consequence of ‘channel activity’ has largke stonsequences as it induces the
fusion and budding process of the virion. Viral channel aedorming proteins exist with dif-
ferent numbers of transmembrane (TM) domains. The workypthesis is that the proteins
diffuse as monomers in the lipid membrane and finally sedeatble to form the functional unit.
Self-assembly has to take place at the level of the tertindycuaternary structures within the
low dielectric medium of the lipid membrane. Computatioteadhniques are used to analyze
the assembly process. lon flux is simulated using steeredamlar dynamics (MD) simula-
tions and analyzed using Langevin equation of motion. Cotatice measurements flank the
in silico investigations. Data of the channel forming photépu from HIV-1 will be shown as

a test case.

1 Introduction

In a series of viruses short membrane proteins have beetifidérwhich are found to
alter permeability of host cell membrade&or some of them such as M2 from Influenza
A, functional analysis have been done and it is now estadaishat M2 acts as a proton
channel. For others proteins such as Vpu from HIV-1, p7 froBMHand others data on
ion conductance were obtained by reconstituting the prsteito artificial bilayers. In
analogy to M2 however it is concluded that these proteingschannel forming proteins
in vitro as well. For Vpu from HIV-1 for example increasingiggnce is now given in
the literature that the protein interacts with host celtdas and hampers their mode of
action. In other words besides altering the permeabilittheflipid membrane Vpu acts
also as a cellular modulator via assembling with host celtgins. No matter which role
the proteins accomplish they have to assemble to fulfillrtrede in the life cycle of the
virus either with themselves to form channels or pores oh \hitst cell factors. In the
light of these findings on a molecular level the questioneari§) once assembled, how
selective are these proteins, and (ii) what is the mechaaofsassembling per se. These
questions are also relevant for other diffusion processessa the lipid membrane such
as viral fusion, DNA/RNA delivery and even budding. Struefunformation of these
proteins is emerging via NMR spectroscopic investigati¢tts Vpu they have confirmed
that the TM domain is helical. Computational methods mayeses a torch to enlighten
atomic details, since high resolution data is not avail&ell of the proteins.
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Figure 1. Bilayer recordings of Vpu 32 using different types of salt at a holding potential of 100,580 mM
salt concentration, HEPES, pH 7, reconstituted into POPBPO (1:4) (left). Pentameric model of Vpuss
(middle) through which the ions are pulled. Respective migaeof mean force of a K-ion being pulled through
the pore. In black the averaged values for 5 (red) indiviguglings.

2 Results

2.1 Experiments

Experimental findings with a peptide containing the first 8#re acids of Vpu, Vpuy_s»
(MQPIPIVAIV 1o ALVVAIIIAL 59 VVWSIVIIEY 3¢9 RKI), reconstituted into artificial lipid
bilayers show conductance in the range of 17 - 20 pS in 300 A& ClI solutior?. When
changing the anion, e.g. NaCl to NaBr a small change in caadae is found compared to
alarger change when changing from NaCl to KCI. This indis#tat the assembled bundle
prefers to conduct cations over anions. However in the bikbnductance measurements
with a series of other monovalent chloride salts it is codellithat the bundle is only a
weakly selective channel. Together with the findings ofratfesubstrate permeability by
other groups it is concluded that the bundle assembly mayleeta conduct ions AND
small molecules. The mechanism of how the bundle discritegis still not clear. It is
suggested, that conformational changes due to lipid coitiposire responsible.

2.2 Computer Simulations

To transfer the experimental data into in silico experirsdrglical models of a pentameric
assembly of Vpu_ 35 have been generated using XPLOR (A. Bruenger). Using adielic
motif for the TM domain is suitable based on NMR experimetse bundle model has
a hydrophilic C terminus due to Ser-24 and Arg-31 facing tlradn of the pore and a
hydrophobic stretch towards the N terminus. With steereteoutar dynamics simula-
tions in a fully hydrated lipid bilayer using Gromacs 3.2Ar¢dmos 96 ff, PME) K-, Na-
and Cl-ions have been pulled through the lumen of the porsumig a model of one-
dimensional stochastic dynamics for the ion Langevin éqods used to calculate the
potential of mean force of the ion. The data indicate a s-sti@prve with a minimum at
the C terminus and a maximum within the pore in the region efttihidrophobic stretch
produced by the amino acids towards the N terminus. A corspaf the energy bariers
of the different ions shows a preference for cations ovemthien. Based on the current
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model and physical method to calculate the PMF the in silata dupport the experimental
data of Vpu being a weak channel.

3 Discussion

The quality of the current data depends on the physical magksd for ion diffusion, the
method used to derive the relevant data and the bundle ntedk! iTo elucidate the affect
of the bundle emphasis is currently given to establish aogadtfor generating reliable
bundle models. The approach can be summarized as folloindetection of the TM
domain(s) of the protein using secondary structure priesigirograms, (ii) obtaining an
equilibrated structural model of the momo#eand (iii) generating high quality bundle
models by screening conformational space. In this lastestagrotocol is used which
combines backbone positioning followed by side chain gatier (Kriiger and Fischer in
this Proceedings p. 269). All the calculations are basedhem$sumption that the protein
is produced as a monomeric unit in the endoplasmic reticaodwill fold and diffuse as
a monomer prior to assembly.

4 Concluding Remarks

Self-assembly of the Vpu protein leads to a weak selectinelley which may be also true
for other viral proteins with a single TM domain. Dependimgtbhe experimental or in vivo

conditions Vpu may also allow substrates to pass (chanm&-gualism). Correlation of in

silico models with experimental data can be achieved tooetb on the structure-function
paradigm. Calculating functional data will be used to sisgitfee most reliable models.
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We discuss the development of a physics-based, coarseedraiolecular model and its sub-
sequent application to in silico functional investigatidBuch models overcome shortcomings
of both sequence-based bioinformatics (no physics) andceutzdr dynamics simulations (large
CPU requirements, therefore sampling issues) as an ititegepproach. We demonstrate this
claim by showing: capabilities to investigate macromolacthermodynamics [here: assem-
bly of the bacterial ribosonintegrating information into the physical realm [here Hpvo-
teasé and drug resistanégWe discuss also further (technical) advantages: the ctatipos
are highly parallelizable, allow for high-throughput seméng, and can be integrated with an
information driven analysis technicfie

1 Introduction

Understanding protein-protein interactions, signalirghgvays, protein dynamics, and
biomolecular mechanics in general is of uttermost impa®an systems biology and in
all areas of life science.. Proof of the great use of mathigalanodeling of signaling-
networks are well known, e.g. the work by Lee et.al. on the ¥igmaling for oncogene-
sis.

To this end established protocols rely on off-the-shelfrifmrmatics algorithms such
as Hidden Markov Models (HMM) and other machine learningrapphes to investigate
e.g. the vertices in interaction networks. It was, howewmeted for example by Albéft
that most computationally derived protein-protein-iat#ions networks show too many
false positives. This can be attributed to several drawbadkstatistical modelling as
the underlying theory of sequence-based bioinformaticeuares such as HMMs: these
bioinformatics models are ’local’ in the sense that they matessarily take into account
multi-amino-acids correlations - a property that conti@auto recognition and structural
stability as recently re-confirmed by the Plotkin1ab

Molecular dynamicgon the other hand allows for the detailed investigation ofsgh
ical and chemical properties. The high computational caststhe major drawback of
this approach: it is — despite exponential progress in hareand software — still impos-
sible to simulate large number of protein mutants, althosigth databases are routinely
investigated by sequence-based algorithms.

Now reduced molecular models allow to bridge the gap betweeasequence-focused
bioinformatics and the detailed molecular biophysics evaithg for realin silicio structural
& functional proteomics and derivation of the above mergimteraction networks due
to the fast computation of reduced (thermo-)dynamics is¢hnodels. These models take
into account physical interactions and their effects suchiading stability or responses
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to perturbations of the protein’s structure. Both the ahiation of false positives and the
inclusion of potential, not yet detected interactions Wélp to derive more precise protein
interaction networks, perform myriads of thought expenisg and allow therefore the
functional characterisation of the underlying genomes.

2 Reduced Molecular Models

Interactions within biomolecules are usually modelledwgibhphisticated force-fields and
contain various terms such as Lennard-Jones-potentiatdr@statics, hydrogen-bonding
etc. For small perturbations such a full potential can beaexlpd to second order in
a Taylor expansion, which then poses the problem of diaggingla quadratic fori
Eigenmovements and eigenfrequencies are then easilyndetat. Tiriont® was the first
to investigate the resulting dynamics. Extensions witipeesto anisotropy, extended
thermodynamic$, or non-linear conformational transitioliswere introduced in recent
years.

3 Applications

3.1 Protein Aggregation Network in the Ribosome

Using Micheletti’s Self-Consistent-Pair-Contact-Pdai@initeration schem& we investi-
gated the influence of the presence or absence of ribosowtaims and pairs of them on
the binding affinities of the otheks This is a protocol suitable for general biomolecular
formation processes. For the organisnthermophilusve found that the assembly map is
in very good agreement with the experimental known ond=fagoli. This study exampli-
fies: reduced molecular models can be used in multiscakstigations and enable one to
derive computationally protein-protein-interactionwetks.

3.2 Amino-Acid-Mutation Network in the HIV1-Protease

We were furthermore able to parameterize reduced modetsxctoporate effects of mu-
tated amino acids Using this system we investigated the origin of the drugstasce
mechanism of the V82F-184V-mutant of HIV1-protease (ineliincrease of flexibility in
protein-substructures). By computing "hybrid” mutantshwsystemtically changed wild-
type-like and mutant-like interactions one can reveal tleefmanism: this particular muta-
tion weakens the interaction at the "joints” of the protedsaer. With this we have shown
for the first time that dunctionalannotation of mutation events is possible. Continuing
this work we applied the method to some 40,000 mugaasl correlated the changes in
the protein mechanics to the stability in sequence spaoe dirherization interface in the
protease turned out to be an interesting target for new @setmhibitors: it has a large in-
fluence on the efficient molecular dynamics, while at the stime there are evolutionary
barriers so that drug resistance evolution is repressed.
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4 Concluding Remarks

We have motivated a new approach to cope with shortcominggetifestablished and
widely known algorithms in computational biology: sequeiimsed bioinformatics (no
insight into the molecular biophysics) and molecular dyrar{prohibitive high computa-
tional costs). With such reduced molecular models it is ipies$o merge the information
space of genomes with the physical realm of proteomes - thavgiag for physical under-
pinning of molecular systems biology.

Two examples illustrate the usefullness of this approatle: assembly network of
proteins in the ribosome and the amino-acid network durumiugion of drug resistance.
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We consider the RNA molecule as a self-avoiding walk on thepi cubic lattice and use a
modified Wang-Landau method to calculate its specific ligaand mean square end to end
distanceR? as a function of temperature. The energy function inclugesdgen bond energy

e, stacking energy, or chain rigidity energy/. We find that inclusion of pseudoknots or
g greatly changes the behavior 6f, and inclusion of stacking energy greatly changes the
behavior ofR2.

1 Introduction

RNA molecule is a highly charged heteropolymer built frartypes of nucleotide bases.
Like the proteins, a RNA molecule can attain secondary antidute structure with the lat-
ter being function-related. It is widely believed that tlaéding of a RNA molecule occurs
in two stages. First the elements of the secondary struaneréormed, and then such el-
ements are folded to form the tertiary structure with theegpehange much smaller than
that in the first stage. This mechanism is known as hieraatfotding'. The typical phys-
ical interactions in RNA molecules include complementargifogen bonds between A-U
and G-C pairs of nucleotide bases, strong electrostagicantions and stacking interaction
between neighbor bounded p&ifs The important feature of hydrogen bonding between
bases is that this bonding is of saturated nature meaningiita two bases are bonded,
there can be no other bonds with other bases.

Most theoretical models for predicting the secondary stmes of RNA sequences ne-
glect the formation pseudoknots (see e.g. Fig. 1 in Ref. 8)asume the hierarchical
mechanism of folding. Among other theoretical approactiescoarse grain lattice mod-
els have been applied to study the statistical behavior o Riding, e.g. Leoni and
Vanderzandtapplied so called self avoiding two-tolerant trail modelstady the RNA
folding on a square lattice, in which the saturated naturth@tydrogen bonds is taken
into account by allowing the chain to visit each bond at mwesate. The twice visited bond
corresponds to the H-bonded bases. They consider the sitaptdtonian which includes
only the energy of hydrogen bonds. With this model they aolgdithe phase diagram of
the system which includes native, coiled and branched palyrhases. The similar two-
tolerant trail model is applied for simulations on face egetl cubic latticeésand Husimi
lattice®.

In this paper we model a RNA molecule as a self avoiding walkhensimple cubic
lattice and use Monte Carlo method to study its thermodyodehavior.
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2 The RNA Model and Monte Carlo Moves

We consider a RNA molecule df bases as a self-avoiding random walk of lengytton

a 3D simple cubic lattice. Each lattice site corresponds to amdaotide base and can
be visited only once. The lattice bonds mimic chemical libetween monomers. We
consider following interactions: (#ydrogen bonds between two bas&e homopoly-
meric approximation is assumed wherein each base can baéeddo any other if their
distance equals tb lattice constant. This approximation is not principal, dnel proce-
dure described below can be easily extended to the hetgropdk case. However, here
the saturated nature of H-bonding is maintained meaningetheh base is allowed to be
bonded only with one other. The energy vaiuie associated with each bounded base-pair.
Due to the homopolymeric approximation, here the value f taken as an average of
the energies of A-U and G-C bonds. We use the Value- 15kcal /mol. (ii) Stacking
interactions between two successively H-bonded p#litisen two neighbor base-pairs are
H-bonded then an energyis added to the Hamiltonian. We take = 0.5¢ or . (iii)
Bending energy or the rigidity of the chaiBending of the chain is penalized by some
energyJ. Some unit vectorss'; are assigned to each lattice bond to describe this term.
With these basic interactions included, we have the Hanidto

N-1
H=— Z g — Z Egi,iJrl.,jfl,j —J Z ?i?iJrl- (1)
(i,5)€S (i,j)€S i=1

Here the three sums correspond to the three types of theatitens describe above. In
the first and the second terms the summation goes over algaasgi, 7). The function
gii+1,j—1,; in the stacking energy term takes valuiéthe base pairéi, j) and(i+1,j—1)
are H-bonded simultaneously, afdotherwise. The sum in the third term goes over all
chemical bonds. At this point we purposely don't include éhectrostatic interactions
which will be discussed later.

To investigate the thermodynamics of our system we use thaédarlo technique to
sample the phase space. Starting from some initial contiguaraf the chain we apply the
pivot algorithnT as a proposal move to the next configuration. In the initialfiguiration
the hydrogen bonds are assigned starting from some randefirsi in one direction, and
then in the opposite one. The basic procedure is as thise iftlosen site is not H-bonded
then a random search is made between its nearest neighbochémically connected to
the given site). When the first non-bonded site is found thboral is placed between it
and the chosen one. If no free neighbors are found then thesitexs considered. Two
strategies are applied for assigning the hydrogen bondsgitire Monte Carlo move: (i)
When the center for pivot rotation is chosen the hydrogerdhadrthe given site as well
as of the next and the previous sties are considered brokéar the pivot move these
bonds are restored again using the procedure describee.abBer restoring the bonds
the energy of the new configuration is calculated. (ii) Aldhggen bonds along the chain
are considered broken and reconstructed anew after themimee. The Wang-Land&u
algorithm is used for calculating the density of states.nTife average thermodynamic or
the structural quantities are being calculated with theegarformula

S (A g g(Ey)e Ei/FT
Zi Q(Ei)e—Ei/kT

(A)r = 2)
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Figure 1. The specific he@t, as a function of the temperatufe(in unit e / k) for the system with only hydrogen
bond energy and including pseudoknots (bold line) or exnlygseudoknots (light line)y = 100.
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Figure 2. C, as a function ofl" (in unit ¢/k) for the system with hydrogen bonding & stacking interatsiof
g = 0.5¢ (bold line) org = ¢ (light line), and without pseudoknotdy = 100.

HereT is the temperaturé; is the Boltzmann constantd)r is the quantity under consid-
eration,E; is the energy of the stateandg(E;) is the density of state. In the simulations,
we allow formation of the pseudoknéts

3 Results

Before starting simulations with the full Hamiltonian (We have studied the behavior of
the systems with simplified energy functions in order to geterdetailed insight. Due to
the limited space we bring here the results for only thesgldied systems.

The system with the hydrogen bond energy .ofhis corresponds to the first sum
in (1). The simulated results of specific h&at as a function of the temperatuvé (in
unit e/ k) for the system with pseudoknots (bold line) or without piswnots (light line)
are plotted in Fig. 1, which shows a well defined compactiangition; the transition is
sharper in the system with pseudoknots. The same trangtisgen also on the graph of
the mean squared end-to-end distance (not shown here).

Hydrogen bonds plus stacking energyhis corresponds to the sum of the first two
terms in (1). In this case (Fig. 2) the specific heat is notlshpgaked. While the small
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Figure 3. The mean square end to end distaRéevs. T (in unit J/k) with & = 0, J = 2kJ/mol and
N = 100.

peak at the left side of the main one might be non-essentitii(wthe sampling error) the
one at the right side can not be overlooked; it might be theif@station of two-step RNA
folding in the hierarchical folding mechanism. Figure 2whdhat changing the stacking
energy affects considerably the position of the peak.

Hydrogen bonds plus chain rigidityThis corresponds to the sum of the first and third
terms in (1), where/ may be estimated by investigating the behavior of the catia
length for the Hamiltonian at room temperature. Some eséismshow that the correlation
length is not larger than several thousands of monomershadii@s the value between
0.5kJ/mol and4k.J/mol. For this case we plot the mean squared end-to-end distance
as a function ofl" in Fig. 3 with J = 2kJ/mol. One can see that even such a small
rigidity brings a strong frustration into the system; theatipeak on the graph manifests
the existence of glassy structure at low temperatures.
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Building accurate 3D structural models of proteins and ggroassemblies is a challenging
task. Our modeling technology is based on the CABS modetnsitely tested, state-of-the-
art approach to protein structure prediction. The modetiragess is divided into two stages:
CABS fold assembly followed by the model refinement/setectirocedure, using an all-atom
representation and a more exact interaction scheme egdhfih resolution structure predic-
tion. Fold assembly can be done in a framework of a standampamative modeling pro-
cedure, where spatial restraints are derived from altemaequence alignments with a tem-
plate/templates. Preferentially in more difficult modglicases, a new approach to comparative
modeling can be used, which does not require the prior agmnSelvita’s goal is to provide
an integrated tool-kit for automated protein structuredfmtions. However, like blind predic-
tion experiments show, due to high complexity of predictiasks, fully automated approach
often doesn’t guarantee the highest possible performaiterefore, human intervention is
made possible at every stage of modeling.

1 Introduction

Thanks to international effort in the genome sequencingpts, enormous library of pro-
tein sequences is now available. Despite extensive effostsuctural genomics, the num-
ber of experimentally determined protein structures,dsfby by costly X-ray crystallogra-

phy or NMR spectroscopy procedures, is lagging far behiechtimber of known protein

sequences. Since proteins are involved in practicallyuadtfions performed by a cell,
knowledge of protein structures is necessary for undedgtgrand controlling molecular
mechanisms of life. Current assumptions are, that for alémagction of proteins whose
structures will not be determined experimentally, compaiteal methods can provide valu-
able information.

2 Multiscale Approach to Structure Prediction: Comparative
Modeling and Fold Recognition

During computational protein structure determinationfibliowing main challenges can
be identified: 1) High accuracy structure prediction, atrtsmlution comparable to exper-
imental methods, to enable predicted models utilizatioa mumber of protein structure-
based approaches (e.g. drug design, protein design, nerelmecking, molecular replace-
ment), which is now possible in Comparative Modeling (CMy&#, 2) Structure pre-

diction of proteins or protein fragments for which sequesearch methods failed to find
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unambiguous homologs with known structure (Fold Recogni(FR) and New Fold (NF)
prediction)

To meet criteria of both challenges, precise interactidmesw®, sensitive to small
atomic rearrangement, should be somehow combined with éfigtiency in exploring
proteins conformational space. That can be achieved by icdmgpall-atom and reduced
modeling: the multiscale modeling. Properly designed cedunodels make possible very
effective search of the protein’s conformational sgaed all-atom modeling enable exact
scoring and refinement of the models. Our modeling techiyakefased on a such hier-
archical approach Reduced-space search of the conformational space by tBSTia
followed by a reliable transition into the all-atom res@uatand by subsequent fine-tuning
and assessment of the final models. Such multiscale appeoadtie high-resolution pro-
tein structure predictions, predictions of protein int¢i@ns!, computer-aided drug design
and even study of protein dynamics

CABS computational technology has been rigorously testethg CASP6 (Critical
Assessment of Techniques for Protein Structure Predictionld-wide experiment by the
Kolinski-Bujnicki group, which ranked second best amongra®00 groups participating,
and ranked first when the consistency of the prediction wed as a criterion (the number
of CASP targets placed in the top 20 of the best predictfons)

The design of CABS model enable easy implementation of @pastraints. Such re-
straints can be derived by a large number of bioinformatiotstfrom appropriate known
structures or from experimental sources e.g. from sparsR Nita. Therefore, essentially
the same approach is possible at various levels of protedtetimg difficulty from CM, to
FR and NF cases. For the sake of flexibility two basic modgbatihways were designed
and one alternative to make the prediction more effectidee @ntire prediction pipeline
could by briefly outlined as follows (see the flowchart in thgufe 1): 1) Pre-processing:
Template identification, secondary structure predictianget- template alignments, in-
put for more sophisticated user defined FR multiple alignsie?a) Fast modeling track
(easy CM cases) including fast scoring of alternative atignts and generation of spatial
restraints, 2b) Rigorous modeling track (hard CM and FR gaiseluding 3D threading
and generation of spatial restraints, 2c) Alternative nfindé¢rack by TRACER (hard CM
and FR cases) - without prior alignmeht8) CABS modeling, 4) Post-processing: trajec-
tory clustering, selection of clusters representativelsyilding from reduced to all-atom
representation and finally all-atom models refinement ankiing.

Additionally in the most difficult cases (NF) ab initio modej based only on target
sequence can be performed (the accuracy of the resultinglssdsometimes sufficient
for structure-based protein function identification).

3 Automatic or Human Driven?

As blind structure prediction experiments demonstratad)dn expert experience and in-
tuition becomes a key point to the best possible performasgecially in difficult CM and
FR!. Also in high resolution structure prediction, when a frastof an Angstrom of the
final model resolution matters, human intervention may bgflaéby manual insertions of
a template structure fragments into the final model. Howewxargoal is to develop fully
automated structure prediction protocol which enablecttire prediction on a genomic
scale. Considering difficult modeling cases, the modelipgreach without prior align-
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template restraints
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modeling

| TRACER |

| Structural clustering, models selection | postprocesing

L] (models selection)
| Rebuilding models from reduced to all-atom |

v

| All-atom refinement and scoring |

Structure

Figure 1. The protein structure prediction flowchart - sestéxt.

mentg, included in our pipeline, seems to be an extremely promistep towards fully
automated modeling (errors in alignments seem to be the soairte of failures in protein
structure predictiof).
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The development of therapeutic agents against amyloichskserequires an understanding of
the conformational properties of fibrillogenic species onieroscopic level. Here we have used
molecular dynamics simulations to study the fibrillogenisién peptide B18 in monomeric
form in various environments. In particular, our resultdigate that B18 formgs3-sheet/coil
conformations in water, whereas adsorption at a waterfvagerface inducesx-helical con-
formations. a-(3 transition pathways in water are suggested. Our resulte shat previous
spectroscopic measurements reflect properties of monamerseveal a pronounced confor-
mational polymorphism of B18 in different environmentsushhighlighting the need for an
explicit description of the solvent environment in ordeutalerstand fibrillogenic species from
molecular dynamics simulations.

1 Introduction

A number of neurodegenerative diseases such as Alzheiarer&ssociated with the con-
version of proteins from a soluble, functional form intgdaich structure that is highly
prone to aggregate into toxic oligomers or so-called andylibrils. The conformational
transition is believed to take place in a partially denaityenvironment of a cellular com-
partment either in solution or at an interface. Hence, tiveld@ment of therapeutic agents
against amyloid diseases requires an understanding obtiiferenational polymorphism
in different environments on a microscopic level. To studbyiliogenic species experi-
mentally in atomic detail is difficult because of their tendg to aggregate. Therefore, an
indispensable tool to study these systems is provided bypaoten simulations. Here we
have chosen the 18-residue peptide B18, a fragment of thershan fertilization protein
Bindin® as a model system. The amphiphilic sequence of the peptithewen in Fig. 1 (a).
B18 forms amyloid fibrilsn vitro. The soluble form in water forms-sheet and coil struc-
tures with increased-sheet content in the presence of NaCl as indicated fronuleirc
dichroism (CD) spectroscopy. Addition of trifluorethan®Hg) or adsorption of B18 at
a water/air interface induce-helical conformations as indicated from CD or infrared re-
flection absorption spectroscopy (IRRAS), respectivélg, latter suggesting helices to be
parallel to the interfacé2 Nuclear magnetic resonance (NMR) measurements indicate a
helix-kink-helix motif for B18 in water/TFE with 70:30 votue fractiond as shown in
Fig. 1 (b). No detailed structure is available for B18 in pwater in the presence or
absence of NaCl or at a water/air interface. In fact, it isewan clear to which extent con-
formations indicated from CD or IRRAS arise from mono- ogoliners. We have used
molecular dynamics (MD) simulations to study B18 in monoimarm in explicit solvent
and interfacial environments on a microscopic lével.
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Figure 1. (a) Amino acid sequence and (b) structural modd1® in a water/TFE 70:30 (volume fractions) mix-
ture based on NMR datan ribbon representation. The color code distinguishes/®en hydrophobicyellow)
and hydrophilic blue, green, and rédesidues.

initial water 1 water 2 water 3 water/vapor

Figure 2. Initial configuration (“initial”), typical3-sheet conformations of B18 in water (“water 1-3"), and
representative conformation at a water/vapor interfageai¢r/vapor”). The representation is similar to that
chosen in Fig. 1 (b). In “water/vapor”, positions of wateygens are indicated as gray dots.

2 Methods

B18 in explicit water/TFE with 70:30 volume fractions, puvater in absence and presence
of 100 mM NacCl, and at a water/vapor interface with vapor niodeir were studied using
periodic boundary conditions. Initial peptide configuoas were a helix-kink-helix as in
Fig. 1 (b), an extended as in Fig. iRifial ) or a3-sheet/coil conformation as in Fig. &§-

ter 3). Typically, three 50 ns simulations using the same infigphtide configuration, but
different sets of initial velocities were performed. Moshslations were carried out at
293K to mimic experimental conditions. Simulation details given elsewhere.

3 Results and Discussion

B18 in water/TFE with 70:30 volume fractions, pure water tie absence or presence
of 100mM NaCl, and at a water/vapor interface with vapor niodeair were studied.
During simulations started from extended peptide configoma as in Fig. 2igitial), coil
and-sheet conformations as in Fig. ®@dter 1 —3 were adopteds-sheets were mainly
formed by hydrophobic residues, see Fignater 1 —3 (yellow). Addition of NaCl led to
an increase in the averagesheet content. Varioys-sheets containing different residues
were observeds-sheets formed twice in independent simulations, sugygthiat they are
typical structures in water, are shown in Figvzater 1 — 3.

Pre-formedy-helical conformations as in Fig. 1 (b) were more stable itewaFE or
at a water/vapor interface than in pure water. In generdiglical conformations were
more stable in the C-terminal than the N-terminal half of pleptide. In water at 350K,
transitions fromu-helical into3-sheet conformations where observed as shown in Fig. 3.
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Figure 3. a-3 transitions of B18 in water at 350 K. The representationnslar to that chosen in Fig. 1.

The C-terminal and, after 7 ns, the N-terminal helix disedlin two independent simula-
tions. Thereafter, the peptide underwent a transition facsompact coil as in Fig. ¥(9

to more extende@-sheet conformations, see Fig.&L(— 37 n}. The occurrence of a com-
pact coil intermediate is similar to what has been observethd «-3 transitions of other
sequences in previous simulations, see referenéesuygesting a universal feature for
«-f transitions.

A peptide in3-sheet/coil conformation as in Fig. véter 3 placed next to a wa-
ter/vapor interface was spontaneously adsorbed at thefaoge At the interface, the
amount of 3 conformations decreased, anghelical conformations formed in the C-
terminal half of the peptide in two out of three simulationsrpare Fig. 2wWater/vapoj
and Fig. 1), suggesting early conformational transitidter adsorption. In all simulations
of B18 at water/vapor interfaces;helical segments were approximately parallel to the
interface.

4 Conclusion

Our results on the conformation of monomeric B18 in wateraralwater/vapor interface
and the interfacial orientation of the peptide are in agre@rwith available spectroscopic
data and, thus, indicate these data to reflect propertiesooomers. In addition, our
simulations give insights into conformational distrilmurts and transition pathways on a
microscopic level. Revealing a pronounced conformatipoffmorphism of B18 in dif-
ferent environments, our work highlights the need for arlieitglescription of the solvent
environmentin order to understand fibrillogenic speciesifMD simulations.
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The free energy for increasing the content of helical aneshgdted backbone segments in
polypeptides is estimated performing computer simulatioh‘reasonable” random walks for
all-atom models of isolated single chains. A summary of thglieations on several homo

polypeptides (%o with X=G,A,V,T,K,E) and on the 8(1-40) peptide involved in Alzheimer

disease is reported.

1 Introduction

The aggregation propensity, a consequence of the protgiresee and of its environment,
can be the indirect effect of the absence of a folding proipen$ This effect has been
called “inverse side chain effeétor “natively disordered model” some sequences, when
merged into a given environment, do not find a pathway to fiold protected structures
and are therefore more suited to form a-specific backboredations that can eventually
drive protein oligomerization.

We propose a model for measuring the competition betweefotheation of protected
structures and structures suited to aggregéatidhe propensity for a single chairto adopt
a given valueg, for a global configurational variablé& (r) (r being the configuration of
all atoms in the molecule), is measured by the free engrdy). In the model, collec-
tive properties that monitor the secondary structure ofidep were used as. Because
of the relevance of helical and elongated segments in tlietatie of peptides involved
in formation of fibrils, we focused on the construction ofended helical segments or,
alternatively, of extended elongated segments in diffesequences of 40 aminoacids.

2 Method

Random walks were performed by using the Monte Carlo methale dihedral space of
single chains, with moves associated to randomly chosepematuresT},, .. =10000 K),

the PARM99 force—field, a short cut—off for nonbonding iations (0.5 nm) and biasing
potential linearly dependent on the collective choseraldeilX . The helical content was
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measured via the maximal number of consecutive residudgs2§it® < ¢ < 320° and
297° < ¢ < 353° (X = L,). The p—strand content was measured as the maximal
number of residues with50° < ¢, < 210° (X = Lg, hereafter).

The free energy,(z) = u.(x) — T's,(x) of chaina is given by the following equa-
tions. Assuming that the density of configurations is theagye over all the biased metas-
tatistics, the two contributions, andu,, to the free energy can be rewritten as:

sa(z) = Rlog {ﬁ;(a:)} + Rlog {<exp(V)>;(a:)}

[, Ua(r) Pi(r) 8[X (r) — 2] dr

Ua(x) = ug,q + doe RT/2 + (2)

1)

where: 7/ and P’ are, respectively, the density ofand the configurational probability
evaluated collecting the metastatistics of the bundle aédxd random walksy is the
biasing potential (linear functions a; v is the space spanned by configuration& (r)

is L. or Lg (antagonist);f, is the free energy in state of chaina; v, is its total energy
in statex; K, = d,RT /2 is the kinetic part (withl, torsional d.o.f.)uo , is the reference
state for energys, maz)-

TheU,(r) term is given by the force—field, this time including longrge corrections,
and adding mean—field corrections for the environment. Ke tiato account water solva-
tion, finite difference solutions of the Poisson-Boltzmamguation for the polypeptide in
water, together with solvent accessible surface areaibatitins, were included itv,,.

3 Results

Homo polypeptides with sequencegXX=G,A,V,T,K,E) were studied. Their helical and
([—strand propensity was compared with thé(A-40) peptide involved in the Alzheimer
disease and several peptides with the #equence randomly scrambled.

As a summary of this study, here we report in Fig. 1 the consparbetween the free
energy of the chosen variables forG A4, V4o and A3(1-40), in water solution (panel
a) and in the vacuum (panel b), this latter modeling the mamdenvironment. Thé
profiles are shifted for graphical purposes.

Gly is unstructured in water solution, displaying only a raate resistance towards
extending its5—strand content. In a membrane—like environment, thistaste is almost
completely lost and even small intermolecular interactioan easily stabilize extendge
sheets. Ala displays an opposite behavior: both in watettisol and in the membrane—like
environment the chain displays a high propensity of beingctiired in helical segments,
while the resistance to extertt-strand content is large. Val displays an intermediate be-
havior: in water, the propensity for extending helical segis is similar to that of Gly, but
the resistance to exteritd-strands is similar to that of Ala; in the vacuum, the projitgns
for extending helical segments is similar to Ala. Thg(A-40) peptide displays a behav-
ior that is similar to Val homo polypeptide. The significanbpensity of extending helical
segments in the membrane—like environment is expecteny #¢i(1-40) part of the mem-
brane protein APP. But this propensity is almost entire$t In water solution, where the
f(L,,) profile is almost flat. On the other hand, no significant desgea the resistance
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Figure 1. Comparison between free enefgy... ) (left z-axis) andf (L) (right z-axis) in Eq. 1 between several
peptides, in water solution (a) and in the vacuum (b).

of extendingG—strand is displayed when the peptide is extracted from thmlonane—like
environment into the water solution.

The similarity between A(1-40) and Valy, together with comparisons with other
helical or 5—strand propense peptides (data not shown here), implgsthsignificant
propensity for extending—strand length is encoded in the3f-40) sequence. Rather,
a significant loss of propensity for extending helical comts displayed when the pep-
tide is moved from the membrane to the water solution: aggiegis more the result of
a low propensity for intramolecular folding than for a sgiecpropensity for extending

(—strands.
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A new docking model PhDock is presented. The docking proessrrelated with global

deformations (normal modes) of a receptor and with reaatenis of its side chains. Deforma-
tions are derived from an elastic network model. Microscatgions of individual residues are
generated using a statistical potential derived from aiipiof conformers. A basin-hopping
Monte Carlo dynamics of a ligand is carried out using the SUFI-B energy plus protein - lig-

and Lennard-Jones interactions. The electrostatic ¢aimn is computed using SCC-DFTB
atomic charges (Mulliken and CM3) in the presence of thepteedfield, which accounts for
the ligand polarization effects.

1 Introduction

Docking methods of small molecules to protein targets haenkextensively developed
in the past few decades. Due to constant increase of avaitabhputational power, some
procedures that were previously out of reach become pilggeodgsible. We present a
flexible-receptor and flexible-target model that is baseéxiansive two-scale probing of
receptor configurations, and the ligand dynamics which &tan a QM/MM potential.
The slow-motion, global receptor deformations, are actaxlifor by considering first few
target normal modésierived from an elastic network modeln turn, faster reorientations
of amino acid side chains allow achieving more energetidallorable interactions by the
ligand. This reorientations are modelled by switching st side chain conformations,
taken from a library, according to a Monte Carlo dynamics using library providempen-
sities as a stochastic potential. Mezoscopic and micrascogtions are decoupled, except
for the checking of sterical conflicts. In the presence oféweptor with its own dynamics,
a basin-hopping Monte Carlo ligand dynamics is carried aith tihe potential that com-
bines ligand deformation energy computed using a fast SECHXQM method, together
with protein-ligand coupling given by Coulomb and Lenndaiies interactions with the
receptor atoms. The electrostatic contribution is comgbuging ligand CM3/SCC-DFTB
atomic chargésin the presence of the receptor, which accounts for elegicdarization
effects.

2 Potential Energy Function

The potential used for the ligand minimization and dynansatefined as follows:
E = ELJ + EES[(]CM3+P; 6] + EQ]W (1)

whereE"/ is the Lennard-Jones term computed using Amber94 parasifetehe recep-
tor, and a fixed set of LJ parameters for the ligand atoms. &maining terms represent
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the Coulomb interaction energy with the CM3 charges andrizaltion corrections to the
ligand charges, as well as the ligand quantum mechanicedgmnehich is computed using
the SCC-DFTB method, which has an algebraic structure ofjatiBinding method with
the energy decomposition into the "band structure” anddlgpn”:
occ.
1
E:Zei—i—EZUABQRA—RBD. 2

A+#£B

The Hamiltonian, however, has an extra teHﬁ,, which includes interactions of intra-
molecular partial charges and interaction with externediebstatic field:

Hpp@P 8= HR B + Hp,, Hy, = 8, (CA +TRY), veA (3)

whereT'y andI'$** are corresponding potential shifts on atom A, &hg is the overlap
matrix. Atomic charges on the receptor are included in lily8C€C-DFTB calculationgia
¥t shifts:

1 Q
Fext. — - n 4
=) TRn ] (4)

n

where),, are the receptor charges, anscales the strength of the interaction potential.

2.1 CMS3/SCC-DFTB Charges

The CM3 procedure computes a correction to the Mulliken gbsuafter the SCC cycle,
which reduces systematic errors of individual bond dipoles

Gk = qp + Z Tk (B ) (5)
k' Fk

whereg;, is the CM3 charge on an atoi q,g is the original Mulliken chargel3y is the
Mayer bond order and}; is a function of the bond orders which determines the amount
of the charge to be transferred from an atento an atonk:

Twrw = Dz, 2, Biw + Cz,z,, (Brir)*. (6)
TheC andD coefficients were determined by the parameterization phaee

3 Sampling Scheme

3.1 Side Chain Conformer Libraries

We use libraries constructed and published by Shetty%etEese side chain conformer li-
braries were extracted from high-quality protein struesithey maintain crystallographic
bond lengths and angles, in contrast to traditional rotdibearies defined in terms of
angles under the assumption of idealized covalent geométng libraries provide also
backbonep, ) dependent propensities for eacl? 4lthedral angle bin, computed from the
conformational populations.

The conventional Metropolis algoritinis formulated as a rule which states that tran-
sition from a stated to a stateB is accepted with the probabilitkp (—(Ep — EA)/kT).
This is, however, equal to the rati®, / P of the probabilities of stated and B. In this
approach the probabilities are taken from the normalizeggnmsities included in the SCL
libraries.
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Destination conformations are drawn with equal
probabilities from the whole ensemble of conformations
allowed by thep, ) angles. Frequency of side chain ori-
entation changes for a given residue is determined by /. e
its distance to the ligand. Currently a dumping function 7

¢~ (5% is used withrg in range of 0.7...1.2 nm.

3.2 Normal Modes = =
Figure 1. An example of a SCL
Normal modes are computed using MMTK libréry step. Two randomly selected con-
written by Konrad Hinsen, in the Crepresentation of ~formations are shown using the CPK

g . L . del. E d Ii ti
the protein. The applied potential is defined as follows: ?:(;)mihe YOIy Serond contormaton

V(T_ﬁ e FN) = Z f(T‘%)(T‘ij — T‘%)Q
i<j
wherer;; = |7; — 7|, and the pair force constaﬁ(r?j) is given by the expressioh:

SCLO.5 library is drawn us-
ing thin lines.

b0y = [ 36 10°79, — 2.39 % 10° 79, < 0.4nm
") = 128(r9,)° rl. > 0.4nm

using nm and kJ/mol units, and depends on residue distartice neference conformation.
Diagonalization of the second derivatives matrix using arifr basis gives the modes
my,; and the corresponding frequencigs The resulting atomic displacement vectors for
selected modes (default: the lowest four nonzero modegaied from the ¢ atoms to
all remaining atoms in each residue.

Let the nm-state be defined ds= (d; ...d,,) € R™, wherem is the number of
selected modes ang, can be interpreted as a measure of deformation along:te
selected mode. The receptor atodisplacement is given by:

R -0
i =1 + E dumm
n

The Monte Carlo dynamics using the Metropolis algorithi® carried out with the
quadratic potential/ (d) = qudi- The temperature does not have any well defined
physical meaning and is treated as a parameter of the model.

3.3 Algorithm

The algorithm consists of a sequence of steps that can be atipenh as follows:

draw a step-type with probabilitieem:scl:rb:ligmin (typically: 1:4:64:1 or 2:4:32:1)
if step-type immthen

d"" = d + § whered is a random vector iiR"™

if step valid and accepted Bjetropolis  (E™Y, E) then

apply deformation resulting fromto the receptor; find new basin minimum

end if
else ifstep-type isclthen

draw residue using probabilities given by the dumping figmoxp(—2/73)

draw new conformation from conformations allowed by residu) angles

if step valid and accepted with probabili®, / P then
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change side chain orientation; find new basin minimum
end if
else ifstep-type igbh then
draw transformation being superposition of random, rigighition and translation
find new ligand configuration and its basin minimuy,,
if step valid and accepted with probabilletropolis  (E{SS, Ebasin) then
accept new ligand position and new basin minimum
end if
else ifstep-type idigmin then
perform fully flexible ligand minimization

end if

It should be noted the energy minimization, as a part of tretnblaopping scheme, is
unrestricted allowing flexible deformations.

4 Results and Conclusion

The novel, promising multiscale QM/MM flexible docking meth(PhDock) was formu-
lated, implemented, and is being tested using a number ofiddecular model systems.
These, in particular, include a short helix with severalexaholecules and three protein-
ligand complexes with PDB codes: 1ctt, livd and 2qwe. Thdiegstochastic sampling
procedure located the correct binding modes for the firstdamplexes. In the last, dif-
ficult case with a deeply buried ligand, the sampling procedocated a few alternative
binding poses on the protein surface. Longer sampling piwes along with refinement
of selected control parameters of the model are being chotié
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Alzheimer’s, Parkinson’s, Huntington’s, type Il diabetesid Mad Cow disease, or Cystic fi-
brosis, these apparently unrelated diseases, the so-gabiéein structural diseases, are found
to be a result of protein misfolding. Understanding the aflmolecular inhibitors in formation
of amyloid fibrils plays an important role in finding propeedtments to those structural dis-
eases. In the case of Alzheimer’s disease, experimentseshthat the fibrillation of full-length
A peptides is disrupted by the peptide fragmeiitis_20 (KLVFF). In this contribution,
we studied the kinetics of oligomerization of the systemvad t4316—22 and oneASB16—20
peptides, using all-atom simulations with the GROMOS9@ddiield 43al in explicit water.
In agreement with experiments!316—20 peptide was found to slow down the aggregation
process.

1 Introduction

In many cases protein aggregates take the form of amyloidsfitvhich appear as un-
branched rod-like nanostructures with the diameter of ateroof 10 nm and varying
lengtht. A large body of evidence suggests that amyloid fibrils asested oligomeric
intermediates are related to a number of diseases, ingullitheimer’s, Parkinson’s,
Huntington’s, and prion diseasesFor example, in the case of the Alzheimer’s disease
the memory decline may result from the accumulation of thglaith 5-proteins (AG)
present in two forms - 40 (8, _40) and 42 (A5, _42) amino acids of which are produced
through endoproteolysis of th&amyloid precursor transmembrane protein. Since struc-
tural diseases affect a significant portion of senior pajdait is vital to develop ther-
apeutic approaches to combat the amyloid assembly. Onessilppe ways is to design
molecular inhibitors, which interfere with this processr Example, the peptide fragment
AB16—20 KLVFF? and the peptide LPFFD derived fromafy_»: fragment by V18P and
A21D mutationg can disrupt fibrillation of full-length /& peptide. An insertion of prolines
also inhibits amyloid formation. An another powerful ségy for inhibition is a peptide
N-methylation. It was demonstrated that themembrane-pabie NN-methylated pen-
tapeptide 4816 — 20m is an effective fibrillogenesis inhibitor, capable of bptieventing
fibril growth and disassembling existing fibAls

In this contribution, we study the influence of a pentapep#id; ;oo on the kinet-
ics of oligomerization of longer Bi6_22 peptides, using all-atom simulations with the
GROMOS96 force field 43a1 in explicit waber Since the fibril formation time f,,-4;
of a system of two &15_22 and one A15_o¢ peptide is much longer than that for three
AB16—22 peptides, one can expect that, in agreement with experghent, ;oo fragment
slows down the fibril growth process.
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Figure 1. The free energy landscape as a functiolj0find V2. Typical conformations of some local minima
are shown.

2 Method and Results

The structures of monomericAs_20 and A3s_20 were extracted from the structure of
AB10-_35 peptide available in the Protein Data Bank (ID: 1hz3). Inesrtb study con-
formation changes of a monomefs_og, one trajectory of 150 ns was generated. The
initial configuration of the system of two/A¢s_22 and one A%,5_o¢ was created by ran-
domly placing these peptides in a periodic box of volume 78 mrhich corresponds to
the peptide concentration of 64 mM. For this system, fousmin300, 343, 453, and 484
ns were carried out. All simulations were performe@at 300 K.

We used the dihedral principal component anafygiscompute the free energy land-
scapes (FEL), using the first two eigenvectbisand V. In order to monitor the fibril
formation process, we use the "liquid crystal” order paremé&,. If P > 0.9 then the
system is considered to be in the fibril-like state

Fig. 1 shows the free energy of a monometA 5y as a function o, andV;. The
existence of many shallow local minima separated by lowibi(of only a fewkgT)
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Figure 2. Time dependence &% for the (2A316—22+AB16—20) System. Shown is the structure at the largest
P> = 0.75. Interestingly, one 81522 and one A816—20 adopt anti-parallel arrangement.

suggests that the system is not stable under thermal flimsatAs evident from typi-

cal snapshots (Fig. 1), the monomer adopts mainly coil comftions. Comparing with

the free energy landscape ofifs_22°, one can see that the pentapeptidg A o is less
stable than A5_22. This may be a reason why#s_oo can serve as an inhibitor for
oligomerization of A315_22 peptides, because in some situations proteins which have a
more ordered structure in the monomeric state, are expexteelmore prone to aggrega-
tion.

The time dependence of the order paramétefor the (2A516_22+ASB16_20) System
is shown in Fig. 2. Since the largest valite ~ 0.76, found att ~ 64 ns, is lower than
0.9, afibril-like state does not occur in this run. This stages also not observed for three
other trajectories (results not shown). Therefore, for(@®516_22+AG16-_20) System,
trivri > 400 ns, which is larger thany;;,,.; =~ 200 ns for a system of three B¢_22
peptide8. This result suggests that, in agreement with the expetinéB;s_o, can
interfere with the oligomerization process. There are tassible reasons for this:

(a) AB16-_20 does not contain the negatively charged glutamic acid (B@&g_ 22 does.
(b) The replacement of A_22 by KLVFF reduces hydrophobicity of the whole system.
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In conclusion, we have shown that a short peptide KLVFF caibihthe oligomer-
ization of a system of Rig_22 peptides. It is expected to prevent the fibril growth of
full-length A3 peptides, due to charge imbalance.
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Mu is similar to a human immunodeficiency virus (HIV) capabfdransposing or integrating
itself into the host genome. This paper focuses on a topzdbgnodel describing the changes
in 2-dimensional conformation of the DNA upon Mu binding aradalysis.

1 Introduction

Most of the time, due to the difficulty of makinig vivo experiments, molecular biolo-
gists start with arin vitro system of a certain biological process they want to undedsta
One such important process is DNA transposition. Mu virus thee first transposition
system studied in vitfo This in vitro transposition system aided in understandirey
structure and function of transposition proteins in nupletein complexes called trans-
pososomest. The protein-DNA core of the Mu transpososome is composedetramer
of the transposase, Mu A, bound to the two special DNA endsat&lansposons, some-
times referred to as mobile elements. The reasons for eanistg a topological model of
Mu-DNA complex are two-fold: first, having an in vitro systésinot good enough since
the process of isolation and storage of a cellular systemahagge part or the whole sys-
tem itself; second, there is no known high-resolution stmecof the Mu transpososome to
date. A mathematical model (topological or geometric) camélpful in removing redun-
dancies thereby reducing the number of biologically plalestases and saving valuable
time.

A B &X y
O @ ® ==l
o~ o mmm
SW SE z trefoil

0 tangle 1/0 tangle 1 tangle

ly +z-2x =0mod p |

Figure 1. A) Examples df-string tangles; B) Definition of colorability. A coloringf diagram of a knot or link
or tangle is a functior : {arcs of a diagram} — Z, such that at each crossing the relatipf- z — 22 = 0
mod p holds, wherer is the color on the over arc angdand z are the two colors of two under arcs. A three-
crossing knot or a trefoil is 3-colorable.

2 Biological Background

In order to topologically study the mechanism of a certainyeme, molecular biologists
start with a circular DNA. Conformational changes on linB&A made by the enzyme
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during catalysis can easily slip and be lost. If one startk @ unknotted double-stranded
DNA and obtains a knotted circular DNA, then the enzyme mastlacted on the DNA.
One possible sequence of enzyme action is: cut, exchangesaa two DNA segments.
Sumners, Ernst and collaborators showed the first mathemhaiodel of DNA recom-
bination using tanglés A n-string tangle is a set of strings properly embedded in a
3-dimensional ball, Fig. 1A. For a thorough review of tamsgéand tangle calculus, see a
couple of papers by Errs. The 3-dimensional ball represents the protein and the su-
percoiled string represents double-stranded DNA. Pastetral used circular DNA with
properly placed recombination (lox P) and transpositidtl (and attR) sites so that they
could observe specific changes in these special DNA sites ppiein binding and catal-
ysis'. See Fig. 2A. When translated to tangles’ parlance, theréves tangles involved,
the tangle modeling a better-understood process of Cremngioatior’ and the tangle de-
scribing Mu transposition. In the lower right hand cornerFig. 2B, Cre recombinase
changes a O-tangle to%’:xtangle. This Cre recombination tangle was used as a toaito u
derstand what DNA conformation was trapped in the Mu trasspome upon Mu binding,
and a 2-dimensional solution (a tangle with five crossindigined by Pathaniet al af-
ter performing all the experiments with different maps vehtrey assumed that the DNA
trapped during Mu transposition lsanched supercoilecand an example of a branched
supercoiled tangle. Most mathematicians are concernddtiét question of uniqueness
of solution. In the following section, one topological canfation of uniqueness of this
five-crossing solution presented by the in vitro experirmaftPathaniat al is shown.
One strength of this topological modeling is that there isansumption made about the
transposition tangle.

A h— GttR EE ottl e mmmcxemml + —eRRGHESE T —
h—::f::mn —_ pam
h— att L —

B where ‘
—>
f . Cre Recomblnaion

o tangle 1/0 tangle

Branched
supercoiled

Figure 2. A) Different kinds of maps of Cre recombination &fd transposition sites; B) 2-dimensional model
of the 3-dimensional Mu-DNA transpososome. Pathatial obtained this five-crossing model of Mu-DNA
complex.

3 Topological Invariant: Colorability

One can use a knot invariant called colorability (Fig. 1B)rtathematically describe the
DNA conformational changes formed after the protein bifds DNA and has acted on
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it. Darcy et al proposed a computational method using colorability to deddNA con-
formational changés Every knot diagranK with k crossings has exactlyarcs. By the
definition of colorability, there is & x k& matrix corresponding to a knot diagraswith

k crossings and arcs. ThereforeK can be colored mod if and only if the correspond-
ing set of equations has a nontrivial mpdolutior?. Similarly, tangle diagrams can be
colored, Fig. 3A.

X6-
X; + X5 - 2Xs = 0| <#—% !

PR

X, Xs X

A+B

Figure 3. A) An example of coloring a 2-string tangle. There six crossings (equations) and eight arcs (vari-
ables). 1A%, it was shown that two tangle invariants can be used to distitn onen-string tangle from another;
B) Tangle addition and tangle closure.

N(T)

A X3\ v/ X B —
7XN 4 X, 4+ Xg -9X, — Tangle Addition Tangle
Xe + X, - 2X; = 0 e 7T -2%, =0 Closure
~ Xg

Tangles can be embedded in a knot. Using tangle calculusptacm be written as
a numerator closure of the sum of two tangles, Fig. 3B. Thistb@n be written as a
tangle equation. Two examples of tangle equation is in FigDAe starts with a circular
unknot (no crossings when simplified topologically) and ®og with a three crossing
knot. These two tangle equations can then be translatectoltmability as systems of
equations solvable modu}g p € Z, given crossings of tangles involved.

@

Figure 4. Two examples of tangle equations, one starts witln&not and ends with a three-crossing knot.

e

To make the long story short, with the use of two simple tamglariants found in
Ref. 10 and some minor computation, there is one and only olnéian to the system of
tangle equations, thereby confirming the in vitro solutibPathanieset al.

4 Concluding Remarks

One question arises from this study. If given the right langft DNA, will the Mu trans-
pososome take the configurations of crossings greater tregifien in the summary table,
Table 1.
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No. of Crossings| Correct Coloring Matriceg Non-equivalent and Colorable
<4 0 0
5 1 1
6 22 0
7 354 3
8 5019 6

Table 1. Summary table of tangles given the number of crgssmthe Mu 2-dimensional configurations.
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The monomeric, intracellular hemoglobin from the fruit flyd3ophila Melanogaster (DmHb)
has been discovered in 2005. It came out that the oxygenysapgiem in insects is more com-
plex then previously thought. Details on diffusion of gadimnds discrimination and hexa-
to pentacoordination changes remain unclear. Here we mgrése results of molecular mod-
eling and molecular dynamics (MD) simulations of gaseogarlds (@, CO, NO) transport
inside the DmHb matrix. In addition to a classical MD trag@ygtan approximate Locally En-
hanced Sampling method (LES) and Implicit Ligand Samplih&) have been employed. The
structural and thermodynamics features of hexacoordinatel pentacoordinated DmHb were
examined and compared to our previous results obtainedufaah neuroglobin and cytoglobin
which display similar heme coordination. Several conriecvities and diffusion pathways,
based on 3D ILS free-energy maps, have been indicated. ssiblat are critical for kinetics
of small gaseous ligands diffusion in primitive hemoglohbiare discovered. These data may
help do understand the impact of evolutionary pressure otejms architecture.

1 Introduction

Recently,Drosophila melanogastddiemoglobin (DmHb), a new member of invertebrate
heme globin family, has been discovetedt belongs to the class of hexacoordinated
globins The sixth coordination position of heme iron ion &wpied by an external lig-
and (i.e. Q, CO) or the distal HisE7D. melanogastehas the open circulatory system
with fluid called hemolyph. In hemolyph there are no hemolélie proteins. Tracheal
system supports passive diffusion of oxygen to the tissnds@ many years researchers
thought that oxygen carriers are unnecessary in this takontHb expresses in fat body
and pharynx muscle, so it is an intracellular protein. g is unclear and is a matter of
the debate. Our goal is to find cavities network and diffusipathways for small gaseous
ligands. These data may help to understand the physiologiesof DmHb and bring new
information on the architecture and function of this antj@otein.

2 Methods

The structure of DmHb (2G3H) was obtained from Protein DaakB All MD simulations
were carried out with the NAMD 2.6 code and CHARMM27 forcedfel In the DmHb
structure heme group coordinates cyanide ligand. To paddiD simulations with dioxy-
gen, the cyanide has been removed and dioxygen ligand hasdoe&ed. This initial
structure was placed in an equilibrated TIP3 water box (8845A3). The relaxation,
heating to 300 K, and equilibration of the system (about 17 &@ms) were completed
during a 500 ps run. A standard MD trajectory 15 ns long wasipced. Additionally, the
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Locally Enhanced Sampling (LES) method was used to fatgli@ diffusion®. The three
3 ns long LES trajectories with 5, 10 and 15 copies ¢ff@ DmHDb structures were gen-
erated (named LES5, LES10 and LES15, respectively). Theadations were run with
the periodic boundary conditions. The Ewald mesh summdtorong range electro-
static interactions was used. The integration timestepiwagor bonded and non-bonded
interactions and 2 fs for electrostatics. The cutoffs fon \der Waals and electrostatic
interactions were 1&. Langevin dynamics with dumping factor 5 pswas used. The
Potential of Mean Force by Implicit Ligand Sampling (PMFA)calculation was carried
out with the VMD codé. This method allows for indication of all low free-energyfite
within a protein matrix. The analysis was performed usireg\iMD code.

3 Results and Discussion

The inspection of root-mean-square (rms) distances frenDtinHb model shows that all
trajectories are reasonable stable (data not shown, av€algha rmset 1.5A). In a static
crystal structure DmHb no entry channels from the solverihéoheme active site can be
found:. Moreover only three cavities are observed. However, wherifhtions of amino
acids side chains at 300K were added, the transient rowtdmbpfrom the solution to the
binding site are presented. Using the PMF/ILS method sutiispaere determined for 3
small gaseous ligands: NO, CO and.Orhe complex network of cavities and channels
in DmHb are determined by tracking dioxygen collisions witsidues (LES trajectories)
and by inspection of the PMF isosurface for selected ligamigailed data about amino
acids involved in formation main cavities may be found in.Flig Using the VMD soft-

Phe69, Phe42, Phe31, Leul09,
CavHeme Leu28, Ile65, Ile27, Hsd61, Solvent
Heml154

Vall16, Trpl31, Ser23. Leul 17,
CavXed Ilel13, Tle27, Alal20, Trpl3, Y Solvent

Phe69, Prol6, 1le66, Pro20

1L

Vall38, Vall35, Tyrl39, Trpl31,
CavXe? Trp89, Ser72, Phe69, Leul34, Y Solvent

Leu85 Leu76, ILE113

Figure 1. Diagram of the cavities in DmHb.

ware, traces of every Qigand were registered in all calculated LES trajectori@st of
5+10+15 ligands observed only 12 copies left the protein 8na timescale. Cavities
DP, Xe4 and Xe2 exhibit exits path to the solvent. PMF is@efis shown in the Fig. 2.
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Figure 2. Free energy map foraQnigration inside DmHb. Two free energy isosurfaces repieBF/ ILS
values of -1.5 kcal/mol (opaque black) and 1.6 kcal/mohgparent dark gray). The DmHb surface is displayed
in light gray and the heme group is represented in dark gray .

Five cavities have been found. Three of them are involvediilding a big, hydrophobic
channel (DP, Xe4 and Xe2). Cavities Xel and Phl are not coededth the channel
thus their influence on the ligand diffusion may by neglect&tle Ph1l pocket has con-
nection only with the surface of the protein. These data #ferent from the standard
myoglobin picture and are close to our previous study fomteroglobin, cytoglobin and
mini-hemoglobiff:”. Maybe hexacoordination provide a completely differenthamism
for controlling ligand affinity and tune ligand diffusiontea Within the hydrophobic chan-
nel at least 4 different exits are located. From the distakpba gaseous ligand can move
to Xe4 cavity or directly to the solvent passing HisE7 res&luFrom Xe4 cavities lig-
and travels either to Xe2 or escape to the solvent usingratexit placed between AB
turn and E helix. Another exit path from Xe2 pocket is locabetiveen G and H helices.
Ligand trapped in Xe2 pocket can move to solution betweenuEf-and H helix. This is
another large tunnel leading to exterior.

4 Conclusions

Our dynamical data provide new information in ccontrashtodtatic analysis of one X-ray
structure. The thermodynamic PMF/ILS calculations congidrthe existence of multiple
diffusion paths in DmHb. These paths are easily accessitdenall gaseous ligands. De-
spite of well conserved tertiary structure, globins havey \different pathways for ligand
diffusion. Composition of the amino acids may be more imauatrin this case than the ter-
tiary structure. Present data should contribute to evahatiy studies of oxygen transport
mechanism in biological systems.
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Results for the screening of known ligand databases veigigsand flexible receptors are
presented using an all-atom model and a very efficient opétiin method. The results are
compared with other programs and a better performance vgrsho

1 Introduction

Virtual screening of chemical databases to targets of knthweedimensional structure
is developing into an increasingly reliable method for firglinew lead candidates in
drug development. Based on the stochastic tunneling me®BdUN!) we have devel-
oped FlexScreér’, a novel strategy for high-throughputin-silico screersftarge ligand
databases. Each ligand of the database is docked againsiciytor using an all-atom
representation of both ligand and receptor. In the dockimgegss both ligand and re-
ceptor can change their conformation. The ligands with thst levaluated affinity are
selected as lead candidates for drug development. Usinthyheidine kinase inhibitors
as a prototypical example we documented the shortcominggidfreceptor screens in a
realistic system. We demonstrate a gain in both overallibgnénergy and overall rank
of the known substrates when two screens with a rigid andbilexup to 15 sidechain
dihedral angles) receptor are compared. We note that theNStfers only a compara-
tively small loss of efficiency when an increasing numberegfaptor degrees of freedom
is considered. FlexScreen thus offers a viable comprongseden docking flexibility
and computational efficiency to perform fully automatedathase screens on hundreds of
thousands of ligands.

2 Methodology

Docking Method: Stochastic optimization with STUN: Non-linear transfotioa of the
potential energy surface using

Estun(z) =In (a: + Va2 + 1) ) 1)

with © = ~ (F — Ep), v = 0.05 Mol/kJ andEy is the lowest energy encountered during
the simulation.

Scoring Function:

Rij Ay qigj Rij Ay
S = Z Z (rT;_r6é+ J>+ Z cos@ij<rT5—T—lé> (2)

Protein  Lig.,fl.SC. LY tJ K h—bonds LY tJ
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Figure 1. Binding energies of the docked substrates. Léé, sigid screening with total score 4206. Right side,
flexible screening with total score 8083.

Partial charges; are usually evaluated with Insightll and ESFF forcefieldhh&rd-Jones
parameters?;;, A;; from OPLSAA or from AutoDock and Hydrogen bond parameters
R;j, A;; from AutoDock.

3 Results

Screen with rigid (1e2n) receptorA receptor has many possibilities to adapt to different
inhibitors. Choosing one fixed receptor for all type of ligarrestricts the amount of
possible binding modes to only a few and therefore some digéoose their specificity to
this receptor. In 1e2n the receptor cavity is rather wideraady different ligands can fit
into the cavity; but distinctive binding modes are missingrhany ligands. Therefore the
10 known substrates of TK are energetically close to eackrdtee fig 1, left side), but
because of the lack of specific binding modes they score wheemany ligands of the
database.

Screen with flexible (1e2n) receptorTo model the receptor flexibility, we made 6 bonds
of 4 side-chains flexible to allow the substrates to find tkbaracteristic binding motif.
Compared with the database all 10 ligands get lower affgitmw (see fig 1, right side).

Astex data set results:The results from table 1 show thiatexScreeris either of similar
accuracy (Glide) or significantly more accurate (Gold, KexAdditionally FlexScreen
proved to reliably find the correct binding modes 896 of the cases FlexScreen yielded
a binding mode with a RMS deviation of less than A.@nd performed therefore better
than Gold, Glide and FlexX.
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| FlexScreen Glide Gold  FlexX:
FlexScreen wins/total 33/59 20/27 40/59
Results< 2.0A 77/86 41/59 20/27 32/59

Table 1. Summary of the docking results; compared are tI;le Rallges of the different docking codes for the
Astex data set and the percentage of cases having a RRIGA.

4 Conclusion

Using side-chain flexibility (15 selected rotational bona@dl substrates ranked within the
upper 10% of the database. The binding energy is substgrialered for all of the
ligands which supports the assumption that the receptavissufficiently able to adopt to
the docking ligand and to model their specific binding matifiich can be compared with
the x-ray receptor-ligand complex. Concerning the acguaad reliability of finding the
experimental binding modelexScreerproved to be of better performance than the three
other docking programs (Glide, Gold and FlexX).
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Conformational transitions are the molecular mechanismrégulating protein function.
Structure-based models are a computational tractable avayntulate these transitions. A
model able to accommodate multiple folding basins is predde explore the mutational ef-
fects in the folding of the Rop-dimer (ROP). In experimerREP mutants show unusually
strong increases in folding rates with marginal effectstabibty. We investigate the possibility
of two competing conformations representing a paralleb(f®)the wild-type (WT) anti-parallel
(AP) arrangement of the monomers as possible native coat@ns. We observe occupation
of both distinct states and characterize the transitionvpays. An interesting observation from
the simulations is that, for equivalent energetic biastrasition to the P basin (non WT basin)
shows a lower free-energy barrier. Thus the rapid kinetizseosed in experiments appears to
be the result of two competing states with different kind@havior, triggered upon mutation
by the opening of a trapdoor arising from the Rop-dimers sgtnimstructure. The general
concept of having competing conformations for the natiagesgoes beyond explaining ROP’s
mutational behaviors and can be applied to other systemswitgrsbetween competing na-
tive structures might be triggered by external factors lmaalfor example, allosteric control or
signaling.

1 Introduction

The funneled energy-landscape and the principle of minimestration explain protein
folding as a diffusive process. Multiple routes lead from timfolded to the folded state’
Evolutionary pressure smoothened the underlying enexggidcape sufficiently that local
minima or roughness do not interfere with folding. The résglbias towards the native
state is robust, so that changes in environmental conditiordimited mutations change
neither the structure of a protein nor its folding behavior.

Structure-based simulations, based on the work of, @se these ideas and stipulate
that folding can be simulateid-silico by only taking native interactions into accoait
Commonly, one coarse-grained the description of a proteiguch simulations. Each
amino-acid is described as a single bead centered on thiopash the C,,-atoms.

2 Simulations on the Rop-dimer

ROP (repressor of prime# is a homodimer of 2x63 amino acids(AA). It is part of a
genetic control mechanism in the ColE1 plasmid system andstio RNA. Its wild-type
(WT) structure is that of a coiled-coil helix bundle with @amonomer consisting of two
helices (see Fig.). The two monomers are arranged antilgrdAP) for the WT. In

a series of experiments, the hydrophobic interface betwleetwo monomers has been

8ROP is sometimes also called ROM (Regulator of RNA 1).
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Figure 1. Structures and symmetry of the Rop-dimer

Hydrophobic core mutations have a strong effect on therigldinfolding kinetics and RNA-binding ability of the
Rop-homodimer. They can change the WT anti parallel arraege (left) of monomers (in green and yellow) to
a parallel one (right). This conformational transitionrdjsts the charged RNA-binding interface (highlighted red
sidechains) and makes the parallel mutant dysfunctionalua-funneled energy landscape with two competing
native structures explains Rop’s mutational behavior.

mutated®® These mutations resulted in strong changes of up to four afd@agnitude
in the folding/unfolding rates. Specific mutants lost tHeNA-binding ability, with partly
discrepant behavior in vivo and in vit‘oOne specific mutant has parallelly (P) arranged
monomers and lost its RNA-binding ability. This is not susprg, as the ability to bind
RNA is linked to an interface on the surface of the WT, whictlissupted in the P structure.
To better understand these experimental results, we ashanthe mutations trigger
the competition of P and AP by symmetrizing the interfateWe set up structure-based
simulations with two competing native statesd observe transition between the unfolded
(U), folded P and and folded AP states. Itis important to rioée we gave both P and AP
an exactly equal energetic bias.
In the simulations we observe transitions from U to P and AfesE simulations allow
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to derive a free-energy landscape. The free-energy bdori¢he transition from U to P is

roughly 20% smaller than the one from U to AP. Therefore tinetics U-P are faster than
for U-AP. This is a purely entropic effect resulting from thpeometrically more accessible
P conformation. In P the less mobile turns of the two monornarsface each other in
the transition state ensemble, while the floppy tails of tlemamers can still move freely.
However in AP the turn face the floppy tail of the other monoared are therefore more
difficult to localize?

ROP’s accelerated kinetics for the mutants can therefotmberstood as a result from
the competition of P and AP. While in the WT the slow kinetidsA® dominate, the
mutations in the hydrophobic core open the trapdoor to P aatlle P as an off-pathway
kinetic trap. One measures an increase in kineflcs.

It seems possible, that some mutants possess a degenattedtate, in which both
P and AP are present. Especially the mutaht, Leus — 6 might express this behavior,
as it both binds RNA but is also highly similar to the mutatiti; Ile5 — 6, which only
differs by possessing lle instead of Leu for some AA in therbpthobic core. Current
experiments verify this prediction.

Mutant Binds RNAin Relative Structure
vitro | vivo ke ku

WT Y Y 1 1 AP (X-Ray, NMR)
AlazLew, — 2 Y Y 3.2 18 | AP (in vitro activity)
AlaLew, — 4 Y P 1.5 28 | AP (in vitro activity)
AlasLew, — 6 Y N 310 | 31000 | AP (in vitro activity)
AlasLew, — 8 Y N 610 | 50000/ AP (in vitro activity)
AlasLlew, — 6-rev | Y - 85 670 | AP (in vitro activity)
AlasLew, — 8-rev | Y N 92 | 2700 | AP (in vitro activity)
LewAla, — (2+7) | Y - 10 18 | AP (in vitro activity)

Alaylle, — 6 N N - - P

Table 1. Experimental data of the Rop-dimer and some mutants.

The RNA-binding ability is present (Y), non-present (N) arfelly present (P). The folding and unfolding rates
ke andky are given relative to the WT. The mutants are named accotditite number and location of mutated
hydrophobic core amino acid paft$. The structures haven been determined only for the WT andteriutant,
all other structures have been assumed to be AP becauseérd®ire binding behavior.
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PThe kinetics are determined experimentally by Circularibdism measurements which cannot distinguish
between transitions from U to P or AP, as both states haveagut helical content.
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The nucleosome is the basic compacting unit of chromatimgrapéex structure that enables
DNA to fit in the eucaryotic cell nucleus. Because many bimalgprocesses require free DNA
as a substrate, the nucleosome has to undergo conforniatiansitions to allow the DNA
target sites to be exposed. To obtain insight into the gldgahmics of the nucleosome, mi-
crosecond timescale coarse-grained molecular dynampesfisrmed. Here we report a princi-
pal component analysis (PCA) realised on.e Soarse-grained molecular dynamics trajectory
to identify the global motions obtained in the nucleosome.

1 Introduction

In the nucleosome, 147-bp DNA are wrapped almost twice at@uprotein core consist-
ing of eight histone proteins, one tetramer H3-H4 and twoelgH2A-H2B. The histone
protein core, composed mainly afhelices, is very stable in contrast to the non-structured
histone N-terminal tails, that pass between the DNA supierh&ns. Despite the high
number of interactions between nucleosomal DNA and theasarbf the protein core,
nucleosomal DNA can become free to be processed by DNA hjmatioteins involved in
DNA transcription, replication, recombination or repdihe mechanisms underlying DNA
target site exposure are still under debate. One proposetianism, based on single-
nucleosome FRET evidence, postulates that significanepiet nucleosomal DNA (up
to 70 bp) can transiently detach from the protein édreThese reversible conformational
changes, believed to occur on the 50-250 ms timescale, bautdsponsible for the pro-
gressive invasion of the nucleosome by DNA-binding pratein

To characterize the conformational transitions leadin@&A accessibility, it is im-
portant to understand nucleosome dynamics at equilibrindhca a long timescale. For
this purpose, we performed coarse-grained (CG) molecylaamics (MD) simulations
using a model specifically developed for the nucleosbr@tassical all-atom MD of large
systems such as the nucleosome is currently limited to ab@ihanosecond timescale,
while with the present model of the nucleosome, a one-bga@sentation together with
the absence of explicit water, MD simulations of the nuateos can be carried out over
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protein core

histone
tails
H3
H4
H2A
N H2oB
7 DNA

Figure 1. All-atom and coarse-grained representation efriicleosome (structure 1KX5). The residues are
represented by single spherical beads centered-carbon for amino acids and on phosphorus for nucleic acids.
The histones and the DNA are represented in different colbine nucleosome is symmetric with respect to the

so-called dyad axis.

several microseconds. In the present proceedings, aftdtybpresenting the CG model,
we report a principal component analysis (PCA) performe@d&ns CG MD trajectory
enabling the identification of slow collective motions irthucleosome.

2 Method

A detailed description of the CG model and its force-fieldgmagterization is reported in
a previous study In this CG model, protein residues and DNA nucleotides apre-
sented as single beads (Figure 1) interacting through h@m{for neighboring) or Morse
(for nonbonded) potentials which depend on the interbesthnices. This model shares
similarity with Gaussian network models (GNM) but, in castrto GNM, the Morse de-
scription of nonbonded interactions allows realistic anf@nic dynamics of the system.
Force-field parameters were estimated by Boltzmann inweisithe corresponding radial
distribution functions computed from a reference 5-na#dln MD simulation and further
refined to obtain agreement with all-atom MD root-mean-sgtlactuations (RMSF).
Coarse-grained MD simulations were performed using theFIQLY package The
starting structure used was the 1KX5 structueaergy-minimized in solvent using the
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Charmn¥27 all-atom force-field. A Langevin bath was used to accoanttie frictional
and stochastic effects of the solvent. The reduction of yistesn allowed us to apply a
20-fs timestep. The simulation was carried out at 300 K dusips.

Principal component analysis, also called essential djcsamalysi$, provides a way
to identify the most significant directions of motions in thestem. The method consists
in diagonalizing the symmetric 3N3N covariance matrix derived from the MD trajectory,
whose elements are defined@s = ((z; — (z:))(x; — (z;))) wherex; andz; are the
Cartesian coordinates of the atémnd;. The resulting eigenvectors give the direction and
their corresponding eigenvalues quantify the magnitudbefluctuations. Eigenvectors
with the highest eigenvalues are called the principal campts or principal modes. Here,
PCA was performed with the GROMACS package ona6G MD trajectory. The tails
were excluded from the analysis since their high mobilityskeal the motion of the DNA
and the protein core.

2.1 Results and Discussion

Figure 2. Global motions of the nucleosome. A and a: initiatleosome 1KX5 structure. B-D and b-d:
nucleosome conformations deformed along the first threeesidglach residue is colored with respect to its root-
mean-squared fluctuation (RMSF) along the mode; blue ancoredspond to low and high RMSFs, respectively.

Figure 2 shows the directions of the motions for the firstehwencipal components.
Residues are colored with respect to their RMSF along eammneéctor. The ten eigen-
vectors with the largest eigenvalues describe 22 % of tre¢ ppbtein motion, a smaller
fraction than what is usually observed for other systemk sisgproteins. This result may
be the consequence that important structural transitiothgeinucleosome occur on a larger
timescale than js.

The motion along the first mode corresponds to a bending otlteoplane of the nu-
cleosome that mostly involves i) both extremities (ten pags) of the DNA superhelix;
ii) the facing DNA stretches located on the respective opipdigrn; and iii) amino acids of
H3, H3’, H4 and H4’ interacting with these regions. Simuéansly to the bending of this
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region, several residues centered around the dyad axis¥iL®-bp of DNA and residues
from H3 and H3’) translate in the opposite direction to thé-ofuplane bending motion.
The most rigid regions along this mode are residues thaneim the histones H2B and
the DNA basepairs interacting with them.

The second principal component describes a rocking mogatec of which is located
on the dyad axis. As in the first mode, this mostly involveshbmttremities of the DNA
superhelix, the facing DNA stretches located on the respgeopposite turn, and amino
acids interacting with these regions, while histones H2B mrteracting DNA residues
contribute less to this motion.

Finally, the third principal mode, represents a deformmatib the nucleosome in the
plane of the nucleosome. In this motion, the DNA superhelixenities and amino acids
interacting with these regions participate in the stretgltf the nucleosome in a direction
perpendicular to the dyad axis while H2B residues and the PBiAinteracting with them
contributes to stretching the nucleosome in the directidh@dyad axis.

3 Outlook

Further work is ongoing to investigate, in particular, tip@istaneous unwrapping of nu-
cleosomal DNA extremities from the nucleosome protein cbe also plan to study the
interactions between several nucleosomes in a nucleosonaglwithin the context of the
chromatin fiber.
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We consider folding and unfolding of a protein containechinita sphere of radiu®. We use a
coarse-grained geometry based model. We find that the fptdire is essentially independent
of R but the possible unfolded structures do dependronSeveral proteins placed within
the sphere fold mostly independent of one another unlesintmoeluces attractive interactions
between them. Attractive interactions between molecute® Istrong influence on the folding
times.

1 Introduction

Many experimental and theoretical studies of proteinslirev@ery low protein concentra-
tions. In cells, however, the proteins are confined to cotpamts and come with high
concentrations It is thus interesting to assess the role of confinement eswiding theo-
retically by first considering simple models.

Previous theoretical studies of confinentehhave been focused on thermodynamics.
The confinment has been found to lead to a greater thermodgrséability, broader and
taller specific heat and more compact unfolded conformstian

Recently, we have studied effects of molecular crowdingaaging on protein folding
within a simple molecular dynamics modelHere, we provide a brief account of these
studies.

2 Model

We used the coarse-grained Go-like model, where amino acéesepresented by beads.
The beads interact by a potential that maintains chain tggoand enforces the local
backbone stiffenss through the chirality tefmEhe native contacts are described by

12 6
V;c_ontact = 4e [(@) _ (@) ] (1)
’ rij rij
wherer;; describes the distance between the bead centers. By taking r;‘j‘lti”e/{’/ﬁ
the potential acquires a minimum at a distan;g@”e that is found in the native structure
of the protein. The repulsive potential that keeps protesidie the sphere may be written
as

Vot (1) = 45{(5%)12_(5%)6]4-6, 5; < 4 s;=R—r; @
o 0 , siz4 o=4/v2
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wherer; is a distance of théth center to the origin of the spherA&,is the radius of the
sphere.

The attractive interaction between separate moleculedrizduced in simplified way.
When dealing with several identical proteins, it is nattwessume that if a pair of amino
acids forms the native contact in one molecule, the samepamino acids, but belonging
to different molecules, will also interact. The strength,of such an interaction is an input
to the modelling. We take

) (o2 F 12 Oij 0
Vvizjj,zter = de; [( ] ) _ (i) 1 , 0>e€r>e€ (3)
Tij Tig

ande; is considered to be weaker thafrom Eq.1. We have determined the folding times,
troia, defined as the median over the set of 301 trajectories. Tdiméptime of a molecule

is defined as the first time at which all of its native contactsestablished simultaneously.

For several molecules, test of the presence of the nativiactsnare performed for each

molecule separately. The simulations were performed famin — the small, one domain,

«-( protein with the PDB code 1CRN.

3 Results

We computed ;s of crambin in spheres with various radii ranging frdin= 1000A
down to18A (corresponding to the smalest sphere that may fit the craimidhe native
state). The starting structures for folding were obtaimedugh thermal unfolding at a high
temperature in sphere of radily. To evaluate the influence of the starting structures on
t+o1q We also study folding in an unbounded space. Results of tielations are presented
on Fig.1A.

A —RE=65 B TRES T " TR=R, .A,
500 r@—@R-18A " 60 | R=18A . [ R
e Ry=30A / = Ry=50A B ITH T
.:1': 400 rm--mR =504 / %40 1 _-ﬂ' b TP
S [ +— u "
230 20 g T .
L L o .
200 o Leas Ledplt Sge o= .

100 02 03 04 0 10 20 30 40 0 10 20 30 40

0.1 O‘.2 013 014 0.1 Lo
e i

Figure 1. A: Folding time of crambin computed with differestarting structure sets (corresponding to various
indicated choices oRp). The left panel shows folding in an infinite space and thatrjganel in a sphere of a
finite radius radius? = Rp. B: Folding scenarios of crambin computed with differertrsitg structure setffy
describes the radius of sphere in the unfolding simulatiah produce the starting structures for folding). Left
panel shows folding in infinite space, right panel foldingphere of radius? = R (the same radius as for the
unfolding procedure).

There is no influence of the starting structures anq, Fig.1A (left panel), and there
is only a weak influence the sphere sizetgp, as shown in Fig.1A (right panel). Thus
the confinement does not change the folding times of proteitess one considers very
tight confinement conditions under which the protein banebywes. We also find that even
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though the sequencing of folding events depends on the elwithe startingR, the
confinement itself does not affect it, see Fig1B.

We now consider the crowding phenomena and place severdiprio one36A-
sphere. We calculate,;q for one, two, eight and twelve molecules. The simplest case
is when the only inter-molecular interactions are only du¢he excluded volume. The
corresponding results are presented in Fig.2A. It is segtthie number of molecules that
are present does not change an individual folding time.

A B Fraction of misfolded structures
400
[
% 300
o
-
200
100 . . . 0 . I I
0.1 0.2 0.3 0.4 0 0.2 0.4 0.6 0.8
k,T/e gle

Figure 2. A: Folding times for different number of proteinghin the sphere. B: Folding times for four crambins
on different interaction strength. The inset shows thetiivacof misfolded structures.

The situation changes when attractive inter-molecularattions are added. Fig.2B
showst ¢4 for R=36 A. Fore; < 0.5¢, troia IS nearly the same as fey=0. However,
for larger values ot;, ;.4 raises significantly. Eventually, all structures get micéal,
because of aggregation.
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Using replica exchange Molecular Dynamics simulations 6fgeptide, we compare the en-
sembles of monomer configurations of the Flemish (A21G)lfah#ilzheimer’s disease mutant
the wild type (WT) sequence. Our simulations start from canadtonformations. We find that
similarities between the Flemish and WBAeptide in terms of the random coil like structure.
At room temperature in implicit solvent, thedA_ 39 monomer does not adopt a unique folded
conformation but adopts one of the several low energy strest with the U-shape configura-
tions that are strongly amphipathic. No beta content is esiewhich therefore seems to be a
product of oligomerization and aggregation.

1 Introduction

Alzheimer’s disease (AD) is a neurological disorder, dffeg approximately 12.5 and
47.2% of the population in the United States over the age©@888, respectively. Forma-
tion of amyloid fibrils is the hallmark of Alzheimer’s diseasThese & peptides are re-
leased from proteolytic cleavage of the amyloid precursotgin (APP) as A39 or AG42
residue sequence with unknown function. Many familial Airher’s disease mutants of
the APP protein are external to thegAeptide sequence, and thus influenge gkocess-
ing, but some set of mutations which cluster near amino aasitipns 21 through 23 in the
amyloid 3 peptide possibily changes peptide biochemistBome well studied point mu-
tations are Flemish (A21G), Arctic(E22G), Italian (E22Rutch(E22Q), lowa(D23N) and
double Dutch/lowa mutanfs Despite point mutations near 21/22 region, these mutstion
show strong differences in the kinetics of the formation bfifiassemblies as compared
to wild type A3 peptide and in vitro studies have found that A21G (Flemishjations
slower aggregation kinetic as compared to WF @and E22G (Arctic) mutations. Hence,
this distinction is important for understanding the medsianof amyloid assembly and
critical for correctly assigning the identity of NMR crossak resonances in 2D structural
analysis of A3, where it has been assumed that the peptide is monomer. Rdpsdsent
study focus on the effect of mutation (A21G) on the monomercstire of A339 Wild
Type(WT) by performing molecular dynamics simulations.

2 Material and Methods

The peptide & originally consists of 42 amino-acid residues: [ Asp-Alat+®he-
Arg-His-Asp-Ser-Gly-Tyr-Glu-Val-His-His-GIn-Lys-Le¥al-Phe-Phe-Ala-Glu-Asp-Val-
Gly-Ser-Asn-Lys-Gly-Ala-lle-lle-Gly-Leu-Met-Val-GhiGly-Val-Val-Ala-Ala], which is
usually expressed as# Replica exchange Molecular Dynamics (MD) and canonical MD
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Figure 1. Contact map dorccCa for WT and Flemish mutant.

simulations are carried out with the AMBER9 program, usitigaptom force field ff99.
The effect of solvation is approximated by a generalizednBswlvent implicit solvent
model, with random starting geometry. Sixteen replicassameulated at temperatures
range of 200 K to 640 K and periodically swapped between rEighg temperatures.
Exchange attempts are made after every 0.02ps of simulatiigh temperature simu-
lation segments facilitate the crossing of the energy begnvhile the low temperature
ones explore in detail energy minifid The Shake algorithm is used to constraint all
bond lengths. In the canonical simulation, temperatureeisby velocity reassignment
from a Maxwell-Boltzmann distribution at 291 K and maintdhat that temperature by
using a Langevin thermostat. About 5,000 steps of mininoras followed by an initial
equilibration run.

3 Results and Discussion

In order to probe the structure of#y monomer we have performed multiple replica-
exchange and regular canonical molecular dynamics£&91K) simulations starting with
different initial configuration of flemish mutant and WTsApeptide. Replica exchange
molecular dynamics simulations results indicate that eaphcas perform a random walk
in temperatures ladder, allowing the replicas to escapd lonima. As a consequence,
reliable physical quantities are calculated over the wharge of temperatures.

At room temperature, the WT Amonomer does not have a unique folded confor-
mation but adopts one of the several low energy structurée rdot mean square dis-
placement based clustering analysishows that the ensemble 21 K consists of three
clusters differ little in their average potential enerdigsister A: 946.09(4) kcal/mol, clus-
ter B: 962.59(2) kcal/mol,cluster C: 949.10 (2) kcal/madtalfor WT A3 peptide§. All
three cluster also share as a common theme the U-shape obrffigurations that are
strongly amphipathic. The longer arm is made mostly fronrbptilic and charged amino
acid residues while the shorter arm is formed exclusivelyrbghobic branched residues.
However, no beta content is observed in both WT and flemislammi{i.4%), which there-
fore seems to be a product of oligomerization and aggregatianore thorough analysis
reveals differences between the various clusters. Cléstisra random coil structure with
turn around Ala21-Asn27 and appears with a frequency of 58 WT AS peptide and
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Figure 2. Ramachandran Plot for residue Ala21 and Gly21 inah@ flemish mutant.

30% in Fleinsh mutant. We observe that the turn around resid-28 is conserved, how-
ever having lower probability in flemish mutant as compacetMT, with turn stabilized
by hydrophobic interactions between Val24 and Asn27,Gh2& Lys28 and electrostatic
interactions between Lys28 and Glu22 in WT peptide. Theoregeul7-Ala21lin WT A8
has a well defined structure and shows considerably smaitlestgral fluctuations than
rest of the peptide, which is consistent with NMR studigthat suggest a defined struc-
ture around central hydrophobic region and indicates thiatregion is critical for fibril
formation. Configurations of cluster B also shows a randoitlige structure with a turn
around Vall2-Leul7. This cluster appears with a frequeri@g&6 in WT and 31% in
flemish mutant. In these configurations we observe in WT thésgdges between residue
Asp23-Lys28/16 that have been reported in various expetisrees controlling the aggre-
gation rate of A3°. Finally, 13% of configurations are rich in helicity and fomuster C
present only in WT A peptide. Configurations in this cluster are similar to thracture
that was determined in a 40% TFE/water solutién.

In femish mutant, Ala21Gly we observe another cluster pateal with 39 % that has
turn shifted from Glu22-Lys28 region to 16-23 region. Glypasition 21 might diminish
the N-terminabeta strand integrity in amyloid fibril by shifting the turn regipresulting
into qualitatively different behavior in the structurategrity of the protofibril. In order to
further quantify the variation of the turn region, we calteld the intramolecular distance
between N atom of the Lys28 and carbony oxygen of Glu22 (dégtaround 14) and
various other hydrophobic interaction between Val24 and2Xs Gly25 and Lys28 (dis-
tance around fé) present in WT AG peptide, as expected the interactions stabilizing the
turn region around 21-28 are not present in this cluster.

Fig. 1 shows the intramoleculan@Ca contact map for Flemish mutant, indicates more
populated interactions around region 16-23 as comparedid\#/peptide. However the
RMSD plot of the @ AB3o WT and Flemish mutant displays that similar trend with radiu
of gyration around 1&for both the peptides, indicating similar size or end to disfance
Ca distances for both the monomer.The Ramachandran plotidiuesAla21 in WT and
Gly21 in flemish mutant (Fig. 2) also explores essentialgygame the favored regions of
¢,, indicating no much effect on the flexibility of the monomeoand this region. The
mean percentage af-helix, turn andg contents for all the residues in bothsAceptide,
percentage of beta strand is 1.2 % and 35-40%fbelix in flemish mutant, however no
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change in the secondary structure content observed arasindie Ala21 and Gly21 in
both WT and flemish mutant.

We found that the region around 17-21 which is conserved in AyfTwas not well
conserved in flemish mutant. Even the new cluster lack theenatteractions present in
WT Aj peptide around the turn region, with some new interactionsjpecific to native. In
native A3 peptide the lactam bridge between Asp23 and Lys 28 incrélasd@brillogenesis
rate by three orders of magnitude, however this bridge rsigied in flemish mutant which
might explain the possible role of this mutant on slowing dlggregation kinetics of A
peptide and further stabilizing the monomer structure.
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Structural and hydrational properties of the full-lengtmtan islet amyloid polypeptide 1-37
(hIAPP) were studied in a temperature range from 250 to 45§ Kblecular dynamics com-
puter simulations. At all temperatures studied, hIAPP du¢sadopt a well-defined conforma-
tion. The distribution of residues having the dihedral asgl andv> within the allowed regions
of the Ramachandran plot which defigesheets and poly(L-proline) Il structures along the
peptide chain is close to random, whereas a clear trend devwoperative “condensation” is
seen for residues having Ramachandran angles which obidzectk-helices. This coopera-
tivity and the number of intrapeptide H-Bonds is suppredsetieating or by introducing the
natural intramolecular disulfide bond between residuesiZ7aintrinsic volumetric properties
of hIAPP were estimated by taking into account the diffeeeimcthe volumetric properties of
hydration and bulk water. The temperature dependence alehsity of hydration water in-
dicates that the effective hydrophobicity of the hIAPP acéf is close to that of carbon-like
surfaces. The thermal expansion coefficient of hIAPP is dotinbe negative and decreases
continuously upon heating from —3- 104 to~ —2- 1073 K~1. The spanning H-bonded
network of hydration water at the hIAPP surface breaks vi@m@glation transition at about
320 K, which may be related to the drastic speed up of hIAPPegggion seen experimentally
in this temperature region.

1 Introduction

The aggregation of the human islet amyloid polypeptide BAis involved in Diabetes
Mellitus Type II. Hence, knowledge of the conformationahbeior of this peptide is im-
portant for understanding the aggregation mechanism oPRlAnd for finding the means
to prevent formation of its ordered fibrillar aggregatesichimay be the main cause of de-
cease. Experimental studies of the structural properfieB*®P have not been successful
due to its strong propensity to aggregate.

2 Systems and Methods

In this work, we performed MD computer simulation studieshef structural and hydra-
tional properties of a single hIAPP peptide in liquid watethe temperature range from
250 to 450 K. All atomic molecular dynamics simulations weegried out with GRO-
MACS v.3.3.1 using the OPLS-AA/L force field for the peptidelecSPCE water molecules.
Initially, the peptide was prepared in various startingfoomations, including an-helical
conformation, four random conformations obtained from tums at 1000 Kin vacuq of
which one of the initial conformations being a fully exteddsolateds-strand. After 15 to
30 ns simulation runs in water, the conformational behavidlAPP no longer depended
on the initial configuration used. After 50 ns of equilibeatiat each temperature studied,
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Figure 1. Probabilityng to find Ssuccessive residues with helical conformation. The dabhesl showng for a
random distribution of residues in an infinite chain with fzene contenp of residues with analogous structure:

ns = (1-p)?p°.

200 ns trajectories were used for the analysis of the systepepties. Two moieties of
hIAPP were studied: hIAPP with and without the natural didelbridge between C2 and
C7 residues.

3 Structural Properties

Analysis of the secondary structure shows that at all theezatures studied, hIAPP does
not adopt a well-defined conformation. The helical contéiitlAPP, estimated as a frac-
tion of residues having the dihedral angles within the adidwegion of the Ramachandran
plot, do not depend noticeably on the presence of a disulfilyd and decrease upon
heating. However, the ability of the helical residues tavf@a continuous sequence along
the peptide chain is strongly suppressed by the disulfiddgbri This can be seen from
the comparison of the probability distributiong to find S successive residues with heli-
cal conformation shown in Fig. 1. Large clusters of residuitl helical dihedral angles
disappear by introducing the disulfide bridge and by heating

4 Volumetric Properties

The intrinsic volumetric properties of a biomolecule in aatan be studied, when the
density of hydration water is known The temperature dependence of the densityf
the hydration water in a shell 0.3 nm thick at the hIAPP swafaied of the density, of a
bulk liquid water are shown in Fig. 2a, is belowp, and its temperature dependence is
essentially linear. The temperature dependence of thatdefisiydration water indicates
that the effective hydrophobicity of the hIAPP surface issé to that of carbon-like sur-
faces. Knowing the temperature dependences,aind p;,, we can estimate the intrinsic
volumeV,,; of hIAPP from the equationV;,; = V,,, - AV. Here,V,,,, is the apparent
volume of hIAPP measured as the difference between the \esafithe simulation boxes
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Figure 3. The temperature dependence of the logarithm; gf of hIAPP. The lines are the fits to a quadratic

polynomial.

with and without hIAPP, respectively, both having the saramber of water molecules.
The termAV accounts for the change of the system volume due to the eliffelensities

of hydration and bulk waterAV = V(1 - pin/py), WhereVy, is the volume of hydration
water. In a first approximationV/,, is the product of the solvent accessible area and the
thickness of the hydration shell. The temperature depeselehthe logarithm o¥,,,, of
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hlAPP is shown in Fig. 3. The slope of this dependence is egule intrinsic thermal
expansion coefficient;,,;. Similarly to the case of amyloi¢ peptide (1-42, a;,,; of
hIAPP is negative and becomes even more negative upon ge&irch behavior can be
attributed to a decreasing helical content and a decreasimdper of intrapeptide H-bonds.
Note, that the disintegration of large clusters of heliesidues by the disulfide bridge at
low temperature (see Fig. 1) makes,; more negative (see Fig. 3).

5 Thermal Disruption of the Hydration Water Network at the hl APP
Surface

The spanning H-bonded network of hydration water, whicrecsWlAPP homogeneously
at low temperatures, breaks via a quasi-2D percolatiorsitian, whose midpoint is lo-
cated at about 320 K. Interestingly, approximately at teiaperature, the experimentally
measured lag time of hIAPP aggregation drops drastitalyence, we might conclude
that the breakdown of the spanning H-Bonding network of htidn water might foster
hlIAPP aggregation.
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A Knowledge-Based Potential for Protein-RNA Docking

Ranijit P. Bahadur and Martin Zacharias

School of Engineering and Science, Jacobs University Bneme
Campus Ring 1, D-28759, Bremen, Germany
E-mail: {m.zacharias, r.bahadgi@jacobs-university.de

Protein-RNA interactions play an important role in all ok processes and it is important to
understand the driving forces that govern this interactibhe mechanism by which a protein
molecule specifically recognizes a RNA molecule in the ¢allanvironment is not completely

known. Here we developed a pair-potential function fromahalysis of the 81 non-redundant
atomic structures of protein-RNA complexes taken from theétn Data Bank. This function

helps us to understand the specificity of the interactiomscamild be useful in a protein-RNA

docking algorithm where one tries to predict the correct plem structure starting from the

individual components.

1 Introduction

Protein and RNA often interact in the cellular environmenperform essential cellular
functions such as expression of a gene and its regulaticey @dm form binary complexes,
for example, the aminoacyl-tRNA synthetases bind sped®iAs for the translation of
the genetic code; or multiple RNA and protein molecules asldla complicated cellular
machine like a ribosome used for protein synthesis. To wgtaed the functional mecha-
nism of these complexes we have to elucidate the specifitttyedr interactions.

Several studies have been carried out recently to understenstructural basis of
protein-RNA recognition [1-5]. All these methods consittez detailed atomic structures
of the biomolecules. Here, we present an alternative apprt@arepresent the protein
and RNA chains in a reduced coarse-grained model, whereagaicto acid is represented
by up to four pseudo atoms and each nucleotide by up to fivedpsatoms. We have
calculated the pairwise contacts between the pseudo atbpmdypeptide and nucleotide
chains and used them to derive a knowledge-based potewntialed non-redundant dataset
of 81 protein-RNA complexes recently compiled by Bahadwale{5]. Furthermore, the
potential was included in a protein-RNA docking algorithrhigh can be used to predict
complex structures starting from the individual strucsunéprotein and RNA.

2 Materials and Methods

The dataset consist of 81 non-redundant known protein-RdAptexes taken from the
PDB [6]. We have first translated the protein and RNA subunits a reduced pseudo
atom model. In case of the protein the same representatiompgsmented in the Attract
docking program [7] was used. Briefly, each amino acid re=idare represented by up to
four pseudo atoms, two for main chain (N and O) and two for slt#ns. The side chains
of Ala, Asn, Asp, Cys, lle, Leu, Pro, Ser, Thr and Val are repreged by one pseudo atom
located at the center of geometry of all side-chain heavpatdther larger side chains are
represented by two pseudo atoms. The main chains pseuds &ipall residues are rep-
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Amino acids Pseudo atoms
Ala N, O, SC1
Arg | N, O, SC1, SC2
Asn N, O, SC1
Asp N, O, SC1
Cys N, O, SC1
GIn | N, O, SC1, sC2
Glu | N, O, SC1,SsC2
Gly N, O, CA
His | N, O, SC1, SC2

lle N, O, SC1
Leu N, O, SC1
Lys | N, O, SC1, SC2
Met | N, O, SC1, SC2
Phe| N, O, SC1, SC2
Pro N, O, SC1
Ser N, O, SC1
Thr N, O, SC1
Trp | N, O, SC1, SC2
Tyr | N, O, SC1, SC2
Val N, O, SC1
Nucleotides
A | PS, AL A2, A3
U| P S, U1, U2 U3
G| PS Gl G2 G3
C| P S,C1,C2,C3

resented by the N and O atoms except in Gly where
an additional main chain CA atom is used. In case
of RNA chain only one pseudo atom used for phos-
phate and sugar molecules and three for each bases
(Table 1).

A pairwise interaction is counted if the distance
between pseudo atoms of protein and RNA is within
4.5A. We computed the frequency of all pairwise
interactions for the whole 81 complexes and con-
verted them into a contact potential using the fol-
lowing equation:

V(PiNj) = —RT In =350

WhereP; N; is the observed frequency of a par-
ticular atom pair of protein and RNA that are within
the cut-off distance given above, aitl is the fre-
quency of the'” protein atom interacting with RNA
atoms andV; is the frequency of thg¢!" RNA atom
interacting with protein atoms (in the data set). The
contact potential for each pair represents the energy
minimum or saddle point of a Lennard-Jones (LJ)
type potential (as implemented in Attract, [7]). The
minimum pairwise distance between pseudo atom
pairs represents the effective contact radius in the
LJ-potential.

Table 1: Pseudo atoms for protein-RNA

complexes.

Each amino acid is represented

by two main chain pseudo atoms (N and O)
and maximum of two side chain pseudo atoms

(SC1 and SC2).

Each nucleotide is repre-

sented by five pseudo atoms, one each for
phosphate and sugar molecules and three for
the base. Gly has one extra main chain pseudo

atom CA.

3 Results and Discussion

The pairwise contact potential between two pseudo atomsotéip and RNA is shown in
figure 1. Aromatic residues show no preference to interaitt thie sugar (S) or phosphate
(P) groups in the nucleotide but the interaction with thel@ordbases is very favorable with
few exceptions. This is due to possible stacking interastlzetween the aromatic ring and
bases that may help to stabilize a protein-RNA complex. Heweo interaction between
the side chain pseudo atoms of Trp and the pseudo atoms oflUrase were found.
Similar to aromatic residues, aliphatic (hydrophobic)dass (lle, Leu and Val) show a
preferential interaction with the nucleotide bases. Rasjt charged residues Arg and Lys
prefer to interact with the negatively charged phosphaiaps but do not interact favorably
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Figure 1. Pair-potential at the protein-RNA interfaces.tdileof the atom types is given in Table 1. If there is
no interaction between an atom pair then that cell is colbtadk. Values should be multiplied by)—3 in real
scale.

with the ribose group. In addition, Arg interacts preferalht with the Adenine base but
only moderately with the other three bases. Aspartic a@ihdnegatively charged, has
less favorable interactions with P and S but it interactsifably with the bases. Another
negatively charged residue Glu has less preference tauttesith P but more to S. Main
chain atoms of amino acid residues have a mixed preferenctetact with the nucleotide
atoms. The knowledge-based potential has been integratiee flexible docking program
ATTRACT which employs energy minimization in translatibaad rotational degrees of
freedom of the interacting partners [7]. Initial tests cate that the potential can reproduce
in many cases near-native protein-RNA complexes in goodeagent with experimental
complex structures (Figure 2).

4 Concluding Remarks

The approach was already used to predict a protein-RNA oaxgiven in the CAPRI
challenge [8] starting from two unbound structures whiclungler evaluation. We are

159



Figure 2. An all atom (left) and reduced model (right) of thepartyl tRNA synthetase complexed with tRNA
(1asy).

now working on a set of known protein-RNA complexes to test plerformance of the
potential to predict the native complex structure starfiogn the individual components
in systematic docking searches.
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We present a fast structure-based method for the predictifmiding free energies and protein-
protein binding affinities, including full flexibility. Thenethod replaces molecular dynamics
simulations by a fast generation of alternative proteiotgin conformations based on geomet-
ric considerations only. The energy function is based orsiglay chemistry and an efficient
continuum solvent approach. The correlation between @xgetal and predicted free energies
obtained for a dataset including almost 600 mutants and thare 350 protein-protein com-
plex mutants is< 0.8 with a standard deviation of 1 kcal/molOwing to its velocity and its
predictive power, the method can be applied to complete tiou&l scans.

1 Introduction

Protein-protein interactions are involved in most proesss the cell and are therefore an
important target in pharmaceutical research. By inhihitio increase of protein-protein
complex formation the activity of many processes can beénfited. However, the directed
design of protein interaction surfaces with defined praesiinvolves large-scale muta-
tional scans. Because of their inherent computational ¢exitp, these are precluded by
the most rigorous and accurate methods in this contextréessinergy perturbation (FEP)
and the thermodynamic integration (T1) methods. These nuzkeof a physical effec-
tive energy function (force field). In these methods, alsmasl computational alchemy,
integration over the free energy gradient with respect t@rupbation parameter yields
the free energy difference between two states. Both metteepisre molecular dynamics
simulations at least in the nanosecond time range to redthisnt convergence, using
explicit solvation. FEP and TI probably work best for consgive single point mutations,
but have also been successfully applied to calculate afesbinding free energies. Hy-
brid methods like the molecular mechanics/Poisson Boltensarface area (MM/PBSA
method combine the calculation of molecular mechanicséneggies with continuum sol-
vent calculations.

Here, we developed a fast method, both to estimate the effecutations on the folding
free energy of isolated proteins as well as on the proteitepr binding affinity. This fast
structure-based prediction makes a systematic compoégtioutagenesis of protein inter-
faces feasible and thus will allow for a thorough analysithefbinding characteristics of
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protein complexes, a pre-requisite for the design of mataiith specified properties, or
for the determination of protein-ligand binding affiniti€ehe proposed method combines
a fast generation of conformations based on geometricat@nts only with a physical
effective free energy function.

2 Methods

In our method, the conformational flexibility of proteins or protein-pen complexes is
treated by CONCOORP® Interactions in the (mutated) crystal input structurearalyzed
and translated into geometrical constraints. Type-depeinuiargins are added on differ-
entinteraction classes. Starting from random coordin#tiesstructure is iteratively rebuilt
fulfilling all geometrical constraints. In this way, mulkpindependent structures are gen-
erated where each conformation is uncorrelated with pusiyogenerated ongsFor the
prediction of free energies based on these (energy-miemfigtructural ensembles, 300
structures were generated. The free energy is approxinbgtad energy function similar
to the MM/PBSA approach

AG = AGsolvation + AGeleCtrostatic + AG'MM + AG'em]ropy . (1)

Figure 1 shows the used thermodynamic cycle to compute fleetedf mutations on
protein-protein binding affinity. The change in affinity ismaputed according to

AAG = AGR}IESant - AG}\DAi/?ﬁitypc
— AGmutatc _ AGmutatc . (2)

complex single

bind
A(}Wildtype
single Wildtype complex Wildtype
mutate mutate
A Gsingle A Gcomplex
single Mutant complex Mutant
bind 7
AC4Mut‘,;ar1t‘, k\

Figure 1. Thermodynamic cycle used to estimate the effeatroitation on the protein-protein binding affinity.
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3 Results

Figure 2 displays the flexibility of the response regulatat@in of bacterial chemotaxis,
CheY, upon the D12A mutation (highlighted in green). Esalécihe flexibility of neigh-
boured residues is significantly enhanced for the mutamtefiaight). The overall cor-
relation achieved for the folding stability of almost 600 temis is 0.75 with a standard
deviation of less than 1 kcal/mol. For protein-protein gy the obtained correlation is
~ 0.8 with a standard deviation of 1.2 kcal/mol.
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Figure 2. Color-coded change in flexibility of the resporesgutator protein of bacterial chemotaxis, CheY, upon
the mutation D12A. The change in flexibility is additiona#iilown as a function of the residue number and as a
function of the distance of the respective residues to thiation site.
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Correlation effects in the distribution of hydrophobic gralar residues are investigated within
an idealised coarse-grained model for the recognition ofigid biomolecules such as pro-
teins. To this end, a two-stage approach is adopted whetgidh®lecules are first optimised
with respect to each other and afterwards their selectigitiested in the presence of other
molecules. Correlations lead to different optimum chanmastic lengths of the hydrophobic
and polar patches for the design of the two biomolecules emtie hand and their selectivity
in the presence of other molecules on the other hand.

1 Introduction

Biomolecular recognition, that is the ability of a biomaléeto interact specifically with
another molecule in an heterogeneous environment of atnaligt similar rival molecules,

is an essential component in biological systems. The rdtogrprocess between two
molecules is governed by a complicated interplay of noratant interactions of strengths
comparable to the thermal enetgyThis implies that the study of idealised models with
methods from statistical physics might lead to valuablegimtsinto this problem.

2 Model and General Approach

In this work we consider protein-protein recognition on arse-grained level in the frame-
work of idealised models. The biomolecules are assumeddergo no refolding during
the association process which is a justified assumption &t protein-protein recognition
processés Motivated by the observation that hydrophobicity is thgandriving force in
molecular recognitiohwe describe the type of the residue at the positiend, ..., N of
the interface by a binary variable € {+1} for the target molecule and sy € {£1} for
the interaction partnér We then model the energetics at the two-dimensional iterby

N
H(U,@;S):—Ezl—;SlUiei (1)
i=1

as a direct contact interaction of strengthThe variableS; takes on the two valueg1
and describes the local fit of the shape of the molecules a@htbdace resulting from a
rearrangement of the amino acid side chains when the corigolesmed.

To study the recognition process between two rigid biomdkewe adopt a two-stage
approach. For a fixed target sequenté = (o—?), ceey cr](\t,)) we first design an ensemble
of probe moleculed at a design temperatut¢ 3 leading to the distributio®(8|c(®) =
ZLD > g €xp (—ﬁDH(o—(‘), 0; S)). In a second step the free energy difference of association
at temperaturé /g is calculated for the interaction of the probe ensemble tiehtarget
molecules(® and a structurally different rival molecuté”. In this step the free energy of
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the interaction of the molecul&l® with a particular probe sequenédas to be averaged
with respect to the distributioR (8|c")) giving finally the selectivityAF' = Fiarget— Frival-
A negativeAF' then signals recognition of the target.

For the majority of real protein-protein complexes the awpace of extended but fairly
small patches of residues of the same type has been repdBiecholecular binding seems
also to be strongly influenced by small-scale structuré therefore consider molecules
which have correlated recognition sites at the interfadh @xtended patches of residues
of the same type. This can be incorporated into our model Hingcadditional correlation
terms like

Heor = —7 Z 91'93’ — M Z 0;. (2)
(i,5) (

to the Hamiltonian of the system. The correlation paranseteand p. (for the differ-
ent types of molecules) are then used to fix the hydrophgtacid correlation length on
the recognition sites. The average extension of the patochessidues from the same
class is used as a measure for the correlation length of tte §iygstem. Introducing the
complementarity parametdt = ). 0;6; which measures the structural fit of the two
biomoleculesr and@ at the interface, the selectivity averaged over all targatsrivals
with the same correlation properties turns out to be the thegdifference between the
averaged complementarity with the target and the rival oués, respectivefy

3 Results

In this section molecular recognition for target and rivalletules with a fixed average hy-
drophobicityh = 0.4 per residue and afixed (to length unity normalised) cori@idéngth

A = 0.263 is considered within the model discussed above. The selyds studied as a
function of the correlation length of the recognition sifettte probe molecules. Figure 1

0.06r

0.05

0.04

0.03

0.02

0.0%

Figure 1. Distribution of the complementarity of the probelecules with the target molecules (solid curve) and
the rival molecules (shaded curve) for uncorrelated (kefi) correlated probe molecules (with correlation length
Ap = 0.25, right).

shows the distributions of the complementarities. For uredated probe molecules the
distribution for the complementarity with the target malkss is clearly separated from
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the one with the rival molecules and shifted to larger valuEkis indicates the overall
recognition ability of the system. A moderate increase ef ¢brrelation length on the
probe molecules shifts the distribution to larger valuethefcomplementarity so that an
increased selectivity is expected. The first moments of iigiloutions are shown in fig-
ure 2. The average complementarity of the probe moleculibstiae target is always larger
than that of the probe molecules with the rival. In the exierases where the correlation
length tends to the minimum and maximum possible valuestb@verages become iden-
tical indicating that selectivity is lost as the probe malles are not structured any more
with respect to a particular molecule. The selectivity asaghin figure 2 has an optimum
at a correlation length that is shifted below the value aomding to the optimum of the
complementarity with the target molecules. A smaller datien length implies the ap-
pearance of an increased number of smaller patches on thgnigon site of the probe
molecule and hence an entropic profit for the interactioh wie target due to more possi-
ble ways to align each other favourably. This effect onlyuafices the contributions from
the target-probe interactions due to the optimisationrdypitie design step. The rival-probe
interaction is not optimised and hence it is insensitive teeiching of structure elements.

0.8,

Figure 2. Upper part: Complementarity with the target males (solid curve) and the rival molecules (dashed
curve) as a function of the (normalised) correlation lerajtthe probe molecules (the fixed correlation length of
the target and rival molecules is shown by the circle). Lopaet: Resulting selectivity of the system.
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Many proteins and peptides form amyloid fibrils. These Idmglically symmetric aggregates
can be highly ordered but are not normally amenable to strectetermination by X-ray crys-
tallography or solution NMR. Therefore although amyloidiféof the same sequence can dis-
play substantial variation in gross morphological feadusach as twist (depending on seeding
and on growth conditions such as pH) the atomic-level osigifthis variation remain obscure.
In order to probe the origins of the diversity in fibrillar stiwe use the weighted-histogram
analysis method of atomistic molecular dynamics (WHAM) teasure the free energy with
respect to twist of two model polyalanine fibrils having difint subunit-packing symmetries
within the overall helical symmetry. We identify differegxin twisting which arise from the
differences in symmetry.

1 Introduction

The interest in amyloid formation arises from its involverhi a number of human dis-
eases and from the potential of amyloid to serve as a nanerialdt assembly could be
sufficiently well controlled. A connection has been progbbketween the free-energy of
twisting of an amyloid sheet and the number of sheets whinlibestacked together within
a fibril', so a numerical method of calculating the free-energy asting is important for
this reason as well as for the purpose of checking hypothlettomic structures based on
partial experimental data.

2 Materials and Methods

Two small model amyloid fibrils were chosen for this studgteeomposed of twg-sheets

of six CH;CO-(Ala);,-NHCHj3 peptide strands. The model fibrils differed from each other
in the symmetry of the arrangement of peptide strands: thesfistem (P) was composed
of parallel3-sheets arranged face-to-face antiparallel to eachathigmfietry class 1 in the
now-standard nomenclatf)eand the second (AP) of antiparallel sheets arranged face-t
face (symmetry class 5).

Following previous studies of the free energy of DNA withpest to helical pitch
twist restraints were applied to adjacent peptide strahoisions were applied at 2nd, 4th
and 6th C atoms of each strand in the pattern 2-4-4'-2' and 6’-4’-4xBere prime ()
indicates the € is on an axially adjacent strand within the sheet. WHAMas applied,
stepping in 2 increments fron0° to —16° and from0° to +16°, with a negative twist
angle indicating left-handed helicity. Restraints hadrarsith of 750 kcalmol'rad—2.
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Figure 1. Free energy with respect to twist. Convergence is better for the AP system (reversibility eaggr),
and equilibrium twist is smaller. The P system shows a localimum at a small twist, although the global
minimum is strongly twisted. Energy is per torsion, showa arerages over the 12 central torsions.

Figure 2. Comparison of interfacial surfaces. These snapshots of equilibrated unrestrained structii@s s
the different characters of the two inter-sheet surfaceth@fmodel fibrils. The back sheet is shown in blue,
while only the inward-facing sidechains from the front shae shown (in green and white). The grooves in
the AP surface areompartmentalisgdpreventing the sheets from sliding past eachother. Ttessahe twisting
behaviour compared to the P system.

Measurements involving strands from either end of the fibdate discarded, in order to
minimise contributions due to edge effects. Simulationsengarameterised using the
AMBER ff99-SB forcefield and run using the AMBER®ackage, with a GBSA solvent
modef. Unrestrained simulations were also run for 21ns, in orderetify the results.
All simulations had additional distance restraints at thatal hydrogen bond ladder to
prevent them from dissociating, with a cuton of & Between the O and H atoms.

3 Results

Free energies with respect to twist are displayed for thedPAdhsystems in figure 1. By
displaying results from both the forward (outward) and reeginward) simulations we
can estimate the error in the calculation as the differeeteden them, which is modest
for the P system and negligible for the AP system. Both systivist; the P system twists
more than the AP but also has a local minimum with less twist.
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4 Concluding Remarks

Pioneering studies gf-sheet geometfypredicted a greater twist for antiparallel sheets.
The tendency of our P systems to twist more than the AP systeensfore requires ex-
planation. Assuming that both results are correct, thecgoaf the difference must be the
interface between the two sheets, as the original studies @fésolated sheets. Figure 2
shows that the sheet-sheet interface for AP amyloid is momngptex than for P, having a
knobs-and-holes character. This leads to a diminishedfl@yiaway from the rectangular
conformation, thus limiting twist.

The presence of a local minimum for the twist of the P systegysests that variation
in twist of experimentally observed fibrils could arise natyofrom variation in packing
symmetry but also potentially from kinetic trapping in s&tvhich have a twist other than
that of the global minimum.

Acknowledgments

We are endebted to M. Zacharias, S. Kannan and K. Kolhoffigpiration and assistance.
Alan Grossfield’s WHAM code was used. This work was fundedhieyEPSRC.

References

1. A. Aggeli, I. A. Nyrkova, M. Bell, R. Harding, L. Carrick,.TC. B. McLeish, A. N.
Semenov, and N. BodeHljerarchical self-assembly of chiral rod-like moleculesa
model for peptide beta -sheet tapes, ribbons, fibrils, aret§j°roc. Natl. Acad. Sci.
USA, 98, no. 21, 11857-11862, 2001.

2. M. R. Sawaya, S. Sambashivan, R. Nelson, M. |. Ivanova,. Siévers, M. |. Apos-
tol, M. J. Thompson, M. Balbirnie, J. J. W. Wiltzius, H. T. Maffane, A. O. Madsen,
C. Riekel, and D. Eisenbergtomic structures of amyloid crogsspines reveal var-
ied steric zippersNature 447, no. 7143, 453—-457, 2007.

3. S. Kannan, K. Kohlhoff, and M. ZachariaB;DNA Under Stress: Over- and Un-
twisting of DNA during Molecular Dynamics Simulatigrigiophys. J.,91, no. 8,
2956-2965, 2006.

4. S. Kumar, J. M. Rosenberg, D. Bouzida, R. H. Swendsen, aAd oliman, THE
weighted histogram analysis method for free-energy catauis on biomolecules. I.
The method]. Comput. Chem13, no. 8, 1011-1021, 1992.

. D.A. Case et alAMBER9 University of California, San Francisco, 2006.

6. G.D. Hawkins, C. J. Cramer, and D. G TruhRarametrized models of aqueous free
energies of solvation based on pairwise descreening ofesaliomic charges from a
dielectric mediumJ. Phys. Chem100, no. 51, 19824-19839, 1996.

7. K.-C. Chou, M. Pottle, G. Nemethy, Y. Ueda, and H.A. Scher&tructure ofs-
sheets : Origin of the right-handed twist and of the increhstability of antiparallel
over parallel sheetsl. Mol. Biol.,162 no. 25, 89-112, November 1982.

ol

171






Automatic Sequential NOESY Assignment and NMR
Structure Improvement by X-Ray

K. Brunner, W. Gronwald, A. Fischer, J. Trenner, K.-P. Neidig, and H. R. Kalbitzer

Institute of Biophysics and Physical Biochemistry, Ungigr of Regensburg,
93040 Regensburg, Germany
E-mail: konrad.brunner@biologie.uni-regensburg.de

and Bruker Biospin, 76287 Rheinstetten, Germany

We are developing AUREMOL (www.auremol.de ), which goal is the reliable and auto-
matic structure determination of biological macro molesuduch as proteins from NMR data.
For a fully automatic sequential NOESY assignment the ta®8/GN has been developed.
The required input consists of a homologous structure foO&ERY spectrum simulation and
the experimental NOESY spectrum. ASSIGN fits the simulat@ENignals to the experimen-
tal spectrum. The fit quality given by a probability dependstloe line shapes and volumes
of the signals. The assignment is varied by moving or swapppin system assignments us-
ing a Monte Carlo approach. A threshold accepting algori(fise®) is employed to find the
maximum of accordance.

1 Introduction

For a fully automated sequential NOESY assignment the t&BIKSN has been devel-
oped. The assignment is driven by the comparison of expatahgpectra of a protein and
simulated spectra. The simulated spectra are derived frprelaninary structure model.
ASSIGN is part of the AUREMOL NMR software suite.

2 Method

The basic idea is to use preliminary structural informateayether with the NOESY peaks
to drive the assignment process. Therefore ASSIGN expédisi@nally to the NOESY
spectra a preliminary structure model of the protein to deesb Such a model can be
provided for example by homology modellthgA start assignment can be provided as an
optional input. The first step is the recording and the preiogsof a NOESY spectrum. In
this spectrum the signals are identified and the correspgratiemical shifts are stored in a
slot list. The second step is to simulate a NOESY spectruitihéostructure. Each expected
coupling signal is simulated with a proper line shape andmw@. The shifts for the signals
are not calculated. Instead of that shifts are taken fronslibtdist and randomly assigned
to the simulated signals. If a start assignment is provideithput the shifts are assigned
according to the start assignment. In the third step theltiegwsimulated spectrum is
compared with the experimental one with respect to line eb@nd signal volumes. The
degree of accordance is expressed as a probability. In Hogvfiog a quenching protocol
is applied to the simulation procedure to improve the agesgrof the spectra. A random
perturbation swaps the shifts of two simulated signals hegtobability of accordance is
recalculated. If the new parameters lead to an improveceaggat with the experimental
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data, they are accepted, otherwise declined. This meth@peated until the agreement
between experiment and simulation cannot be further ingatdor a defined number of

iterations. As a result a sequential shift chemical ass@nns obtained that can explain
the experimental spectra with the final probability of acizorce.

Structure

Recording of spectra
Optimal processing

chemical shifts

Exp. NOE-spectrum Simulation of Signals
- signal identification line shapes

volumes

- creating slotlist

'
Changing of assignment
rebuilding of the
simulated spectrum

bad:

/ decline
good:
Comparision of the experiment and simulation accept

(line shapes, volumes)

l maximum probability

Sequential assignment }

Figure 1. Scheme of the ASSIGN algorithm.

The agreement with the experimental data is expressed aalglity and calculated
on each test region where an experimental signal is foundp&hare compared with the
help of the cosinus criterion, volumes are compared dirdsgtisumming up the intensities
of the testing regions. With the help of frequency distrins$ of solutions with random
and partial correct assignments probabilities of line shapd volumes are derived. For
the test regiom the Bayesian probability of shape and volunis(/) is given as

S,0k pV, ok
— Pp Pp
- S,0k pV, ok S,rnd pV,rnd
Pp Pp + Pp Pp

PS:ok and PV-°F are the probabilities of the partial correct solution @™ andP"-""4
are the probabilities of the random solution. The sum ovef/€},. ) test regions&=SV
(Energy Shape Volume)

PSV,

(1)

NeI
ESV =Y |In(PSV,)| )
p=1

is optimized by the TA-algorithfh

3 Results

In order to evaluate the method, a set of test cases is caadidbased on the structure
of HPr S. aureugH15A) that has already been solved by NMR. In case of an idet
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set the simulated spectrum is calculated from the knowrtttre and is also used as an
experimental spectrum. Here 450 of 455 shifts (99.3 %) weuad correct without any
partial start assignment. In case of a real experimentatspa of HPrS. aureugH15A)
from up to 20 % correct start assignments over 90 % to 99 % coassignments were
found (Fig. 2).

100 R

80
70
60
50 4
40

30
20
10
0 T

0 10 20 30 40 50 60 70 80 920
partial start assignment [%]

correct assignments [%]
[ [ []]
[ [ L[ []]

Figure 2. Correct assignments against partial start assgh

In a third test case only easily obtainable NMR data such asnatal shifts of the
backbone atom&/ YN and H“ is used. In HPIS. aureugH15A) these are 36.5 % of the
whole assignment. With this start assignment 500 strustwese calculated. The 10 best
in respect of energy were taken for further analysis (Fig). 3JBen ASSIGN was used to
assign the missing shifts of the side chain atoms. 85.2 %edlifts were correctly found.
The structure bundle calculated from these data is showigir3E. A clear improvement
of the structure can be seen easily and the bundle is veryasitoi the original bundle
(Fig. 3A). Also the AUREMOL NMR R-factor (0.589— 0.328), the RMSD (0.151 nm
— 0.015 nm) and the Ramachandtamlues are improved.

Figure 3. (A) Original structure, (B) structure calculafeain bb-atoms, (C) ASSIGN improved structure of HPr
S. aureugH15A).

In the last test case the sequential assignment of the mdang. aureugH15A)
should be found with help of the solved structure of HRPraureugwt). In this example
79.8 % of the assignments were already given (Fig. 4B). ASBIiGds 96.7 % of the
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correct assignments, which leads to the structure seengidt€i Again quality values
such as AUREMOL R-factor (0.384» 0.356), RMSD (0.046 nm- 0.027 nm) and the
Ramachandran are improved.

Figure 4. (A) Original structure, (B) structure calculafiedm the sequential assignment from the wt, (C) AS-
SIGN improved structure of HFS. aureugH15A).

For NMR structure improvement by X-ray data please see tt@ agyorithnt.
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Alzheimer’s disease is characterized by the self-asseuoflihe A3(1-40)/(1-42) peptides. The
design of efficient inhibitors is particularly challengibgcause the structures of the toxi@ A
species are transient in character and the modes of actmmrreit inhibitors on 4 oligomers
are unknown. We know that N-methylated326-22 peptides (mA16-22) effectively inhibit
fibrillogenesis and disassemble existing fibrils in vitro. this work we report molecular dy-
namics (MD) and replica exchange molecular dynamics (REMD)lations using the coarse-
grained OPEP force field on a preformed protofibril of sig¥6-22 peptides with either four
copies of A316-22 or four copies of mA16-22. While MD trajectories of 100 ns do not reveal
any significant differences between the two systems, RENifulsitions help understand the
first steps of A316-22 protofibril disassembly by N-methylated inhibitors.

1 Introduction

Alzheimer’s disease is a fatal neurodegenerative disdz@cterized by the aggregation
of amyloid-3 peptides. There is increasing evidence that the oligonfefAssoare them-
selves cytotoxit and the hydrophobic region 16-22 is critical for aggregatiGeveral
inhibitors have been designed in order to inhibit the agatieg process N-methylated
inhibitors such as mA16-22 are known to prevent the growth of the fibrils and disas-
semble fibrils. However the mechanism of action of this iithitis not determined. Our
work consists on studying the early steps of the inhibitismg a preformed protofibril

in interaction with either 816-22 and m&16-22 (called in the text A and mA3) by

MD and REMD simulations. Our results show that N-methylategtides disassemble the
preformed fibril by three mechanisms.

2 Materials and Methods

We use the coarse grained force fi€dPEP(Optimized Potential for Efficient peptide-
structure Predictiofin its last versiof, which describes the short-range as well as long-
range interactions of proteins, in a reduced representalibe initial structure of all our
simulations is shown in figure 1 : it consists of a preformethler of 6 A3, and 4 free /8

or mAG. In mAgG, the (-NH) group of residuesleu 17, Phe 19 andAla 21 ) is re-
placed by (-NCH3). Each system is minimized and equilibrated at the des@exberature

for 1 ns. MD simulation§of 100 ns are realized at constant temperature (330 K), using
Berendsen’s thermostat and an integration time step ofbisthe REMD simulations, we
used 16 replicas for temperatures ranging from 280 to 44kghanges between neigh-
boring replicas are attempted every 7.5 ps. Periodic bayrmbaditions are using for the
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Figure 1. The starting structure for simulations : the pmafed A3 bi-layer (in black) in interaction with four
copies of A3 or mAg (in gray). The N-terminal end of each peptide is indicatethwisphere.

systems, leading to a concentration of aroung:50 The time of the REMD simulations
is of 30 ns, noting that our purpose is to characterize thesfieps of the inhibition mech-
anism, and not the thermodynamical behavior of the systerdsnequilibrium, requiring

much longer simulation times. For the analysis, we caleula nematic order parameter
P,on the 6 peptides of the preformed fibril F1-F6, if£1 then the system is fully parallel
or antiparallel, otherwise if P= 0 it is disordered.

3 Destabilization of the Fibril by N-Methylated Peptides

100 ns MD simulation of the system 13A6-22 shows an averageveRMSD (calculated

on the starting structure) of 2/ for the first layer and 1.8 for the second one. Identi-
cal values are obtained for the simulation of A 4mAj3. Similarly no differences are
found for the P2 values and tliesheet content between the two systems, providing strong
evidence that within the timescale explored, no differendbe aggregation process can
be identified upon N-methylation. This is consistent witnsiations using m/A16-20.

To overcome the sampling encountered by MD simulations, twéied the effect of N-
methylation by REMD. Figure 2.a shows the number of clustacsthe P2-value averaged
at every temperature for both the systems studied. Thegksebow an increase of 32 %

of the number of clusters and a decrease of 36.7 % of the R2-irathe presence of mA

4 Binding of the N-Methylated Peptides to the Protofibril

In order to characterize at atomic level the effect of thakition upon the preformed
fibril, we realized a clusterisation at all tempertauresigs RMSD cutoff of 3A on the
six peptides F1-F6. These results show that the N-methd/laéptides desorganize the
protofibril at every temperature. Looking at the structwbtined at 280 and 315 K, we
identified three mechanisms of binding between the N-mathglpeptides and/A Panels
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Figure 2. (a) Temperature-dependant properties of thedespE1-F6 in 10 & and 6A3+4mAQS simulations.
(b,c) Center of the most populated cluster@&i K for 10A3 (b) and 6A3+4mAgS (c). (d) Center of one cluster
at 315 K for 6A3+4mAgB. The N-methylated peptides are shown in red, the six pregdrpeptides F1-F6 use
the following color code : yellow fog-sheet, grey for coil and blue for turn.

2.b and 2.c show the centers of the most populated clustergitt and without mAG at
280 K. The Ca-RMSD calculated with respect to the preformed fibril are gfénd 8.5A,
respectively. In the structure of C1 in 2.c, two modes of bigdare observed : on the top
of an A3-sheet and &-sheet formed between ntfand A3 peptides. Panel 2.d shows one
cluster of the 6/+4mAgS simulation at 315 K, presenting the third mode of interactio
characterized by one intercalated mAnd two AS peptides sequestered by two fifsee
arrow in figure 2.d).
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The outer membrane protein X (OmpX) froBEscherichia coliwas simulated embedded in a
phospholipid bilayer and as a protein-micelle aggregatee rEsulting simulation trajectories
were analyzed in terms of structural and dynamical propeitif the membrane protein (MP).
In agreement with experimental observations it was fouiadl tte 3-barrel region, embedded
in the lipophilic phase, is very stable, whereas the exlii@ae protrudings-sheet, that plays

an important role in cell adhesion and invasion of gram rieg&acteria, shows large structural
fluctuations. Additionally, water permeation into the cofehe 8-barrel protein was investi-

gated: a very stable salt-bridge and hydrogen-bond netesasits in that barrel and a water flux
is therefore unlikely. No great difference in protein siépand dynamics between the bilayer
and the micellar systems were observed.

1 Introduction

Membrane proteins (MPs) fulfill a wide spectrum of biologditactions and it is estimated
that MPs constitute 30 % of all proteins in living organisrRsirthermore, numerous dis-
eases are directly related to MPs and more than 70 % of akwctlyravailable drugs are
estimated to act via MPs. However, compared to water sojpfgieeins, structural infor-
mation for MPs is sparse. Molecular dynamics (MD) simulatidfers the possibility to
describe the dynamic behavior of MPs. Additionaly, it is gibke to compare the dynam-
ics of a MP in the experimental environment, i.e. in protééiergent co-crystals in X-ray
diffraction experiments and in protein-micele aggregat®MR solution-experiments, to
its dynamics when embedded in a lipid bilayer.

OmpX belongs to the family of outer membrane proteins (Onfigyam-negative bac-
teria and represents one of its smaller members. Its steiatas studied by X-ray crystal-
lography and in a mixed protein-lipid micelle by TROSY NMR spectroggd OmpX is
characterized by eight antiparalf@istrands connected by three periplasmic turns and four
extracellular loops (Figure 1). Four of the eightsheets protrude into the extracellular
space, thus thig-sheet, also denoted as “waving flag”, was suggested to adbydrogen
bonding partner to other proteins in the extracellular spaith complementary strands
at their surfacés This structural property of OmpX confirms conclusions drawom
microbiological studies that OmpX plays a key role in celhasion and mammalian cell
invasion.

Here, OmpX was studied by MD when embedded in a lipid bilayet @as a protein-
micelle aggregate. Experimental observations concethiadlexibility of the protruding
(-sheet, the degree of stability of the hydrogen-bond ndtwothe interior of the pro-
tein and the (in-)ability of OmpX to act as water pore can kEally complemented with
simulation studies at the atomic level.
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2 Simulation Setup

The OmpX protein was simulated in a lipid bilayer, consigtiof dimyristoyl-
phosphatidylcholine (DMPC) molecules, and in a dihexamphdsphatidylcholine
(DHPC) micelle. The NMR structufevas employed as a starting structure. Two sim-
ulations, where OmpX was inserted in a lipid bilayer (sintiolas OmpX-DMPC-1 and
OmpX-DMPC-2) and one simulation of the micellar proteipidi aggregate (simulation
OmpX-DHPC) were performed. The protein in the simulation@®DMPC-1 initially
contains no water in the internal cavities of OmpX, while im@X-DMPC-2, as well as

in OmpX-DHPC, these cavities were initially filled with wat@able 1). All simulations
were performed using the GROMOS simulation softwWared the GROMOS biomolecular
force field (version 45A3CH95)>4.

system/simulation name OmpX-DMPC-1 OmpX-DMPC-2 OmpX-OHP

lipid and assembly type DMPC, bilayer DMPC, bilayer DHPCcetiie
number of lipids 104 104 82

number of water molecules 6518 6559 12682
number of counter-ions 2 Na 2 Na" 2 Na"

total number of atoms 25876 25999 42044

type of box rectangular rectangular truncated octahedron
box size [nm] 5.8x6.3x9.2 5.8x6.3x9.5 9.9-9.9-9.9
equilibration time [ns] 0.44 0.44 0.3

simulation (production) 15 25 25

time [ns]

Table 1. Details of the simulation setups.

3 General Structural Analysis

In all three simulations, the root-mean-square-devigiRMSD) of the protein from the
initial NMR structure is rather high. This high RSMD is majrdffected by the extracel-
lular loops, which are completely exposed to the solventshmv very large root-mean-
square-fluctuations (RMSF). In contrast, thdarrel and the periplasmic turns appear to
be rather stable.

61 to 64 % of OmpX residues are on average observed to adéptrand-like confor-
mation in the simulations, while in the X-ray structure thstrand content is higher (78%).
The difference mainly originates from the the larger RSMREhef protruding3-sheet of
OmpX in the simulations; while in the crystal, thissheet is involved in interactions with
a neighboring OmpX molecule. In contrast, the barrel betiagea rather rigid entity in
the simulations as well as in the X-ray and NMR experiments.

182



4 Sturdy 3-Barrel and Flexible “Waving Flag”

The overall agreement between NOE distances inferred fiomlation and experiment
is satisfactory. Simulations fulfill 78-85 % of the experimaly derived NOE distances
and 52-60 % of all violations do not exceed 0.1 nm. In the exdtalarly protrudings-
sheet regions, only a few interstrand NOEs could be unarobigly assigned, and fast
amide proton exchange was observed in the NMR solution @rpet$. The “waving
flag” seems therefore to be experiencing a large plasticity alocal fraying. The rel-
atively large isotropic atomic B-factors derived from therag diffraction data of the
protrudings-sheet are consistent with the NMR derived observationsvever, the few
NOE distances available for this region are not very welfedpced in the simulations,
indicating that the protruding-sheet region is somewhat too mobile in the simulations.
The region of this fou-strands involved in the protrudingrsheet might show frequent
transitions between hydrogen-bonded folded structuresatvént-exposed less secondary
defined structure.

5 Water Exchange in the3-Barrel

Figure 1. OmpX protein after a simulation of 25 ns in a micellge different colors indicate the secondary struc-
ture assignment3-sheets are in violet, turns are in green, random coils angite. Residues making hydrogen

bonds to another residue for more than 45 % and more than 85tB& simulation time are drawn respectively

in blue and in pink. Water molecules are represented as redef@aWaals spheres with grey hydrogens.

Most side-chains of polar and charged residues of OmpX poittte interior of the
(#-barrel and form a network of rather stable hydrogen bondssait-bridges (Figure 1).
Consequently, no pathway exists between the extracednldthe periplasmic end of the
barrel, making it unlikely to observe a continuous water filasough the barrel. Never-
theless, in the simulations of OmpX-DMPC-2 and OmpX-DHRine exchange between
the internal water cavities and bulk water is observed.
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6 Bilayer Versus Micelle Environment

From the data presented here, no significant differencasteip stability or dynamics can
be detected between the simulations in a DMPC bilayer and B@Hhbicelle. However,
when comparing the few interstrand NOEs of the protrudingheet, the protein-micelle
simulation appears to fulfill the long-range NOEs bettenttiee simulations of the protein-
bilayer system. The extracellular loops seem as well to baea more structural freedom
in a bilayer system than in a micellar system.
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RNAs have many cellular functions ranging from transcoiptto catalysis. The gap between
sequences and 3D structures is increasing and knowledggAtignamics and thermodynam-
ics at an atomic level is missing. In principle, all-atom swllar dynamics (MD) and replica
exchange molecular dynamics (REMD) simulations in exp#iolvent can investigate these is-
sues. However with current computer facilities, these ftians have been limited to small
RNAs. To move to large RNAs, we can resort to coarse-grainedefs. In this study we present
OPERA, a generic coarse-grained model for RNA. We report M® REMD simulations on
two RNAs of 22 nucleotides using a set of non-optimized OPERfameters. Current results
suggest that further optimization of the OPERA force fieldudtl open the door to a relevant
model for studying large RNA such as riboswitches.

1 Introduction

All-atom molecular dynamics simulations in explicit saltere often used to investigate
the dynamics and thermodynamics of biomolecules, but thetirme-consuming and slow
to converge to equilibrium. Pande’s group for instance rgadao fold a 12 nucleotide
RNA with Folding@home, but used 150 000 CPUs

Reducing the number of degrees of freedom is one solutiondel@rate convergence.
Coarse-grained models have long history for proteins, hiyt ® models exist for nucleic
acids : one for DNA and two for RNA:4, with each nucleotide represented by 3 beads :
phosphate, sugar, base. Two of them are based on the G tglptgnich requires knowl-
edge of the native structure. The last model developed byhblgknet al. shows promis-
ing results combining DMD and a square-well potential, butat free of any biasésWe
present here owab initio OPERA force field.

2 OPERA

In OPERA, each nucleotide is represented by 6 to 7 beads {fidlL bead for the phos-
phate, 4 beads for the sugar - O5’, C5’, C4’, C1'- and 1 beadHerbase in pyrimidines
and 2 in purines. The number of particles is reduced of 80%ed bf the six torsional
angles are thus conservedy; 5 and~. Note that the OH group specific to RNA is not
treated explicitly and the sugar pucker cannot be modelbd sblvent is treated implicitly.
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Figure 1. Our coarse-grained model is represented for ageianperposed on an all-atom representation.

OPERA is based on the OPEP force field (Optimized Potentrdtfficient peptide-
structure Prediction) developed in our group for protefasThe potential describes short
range and long range interactions as follows = Eyonas + Eangles + Etorsion + Erg +
Eyp. Erjis a 6-12 potential and’y g is represented by two-body and four body in-
teraction term& The geometrical parameters were derived from a statistiody of 220
structures of the PDB. Here, we use a set of hon-optimizextfoonstants.

3 Preliminary Results and Conclusions

MD simulations of 50 ns were performed at 310 K on two RNAsheaft22 nucleotides :
one hairpin (LIEOR) and one pseudoknot (2G1W). Figures 2&2brsthow the RMSD of
both systems with respect to their NMR structures. The ha{ffig. 2a) is rather stable,
with the RMSD remaining around 44 during the first 32 ns and then around Z50n
the other hand, Figure 2b shows that the pseudoknot deviates more. The RMSD
evolves between 4 and & until 36 ns when it suddently decreases to /i&ﬁFig. 2¢c)
before reaching 1A at 50 ns.

REMD simulations were also performed on the hairpin, usihgeblicas with T rang-
ing from 310 K to 360 K. Each replica is simulated for 150 ns ardhange events are
attempted every 10 ps. Cluster analysis was done at 310 i ts&20-150 ns time inter-
val with a RMSD cutoff of 2.5A. A total of 33 clusters is found and two clusters represent
75% of all conformations. The centers of these clusters afet® A and 4.6A from
the NMR structure. Figure 2d superposes the NMR structurta@rcenter of the second
cluster. Note that this state does display three non natibemts.

We have presented a new coarse-grained model for RNA. Olimjgmary results, using
a set of non-optimized force constants, are very encougagjjirte the hairpin is apparently
stable at 310 K and the pseudoknot is in equilibrium betwesgiverlike and unfolded
states. Analysis, based on 150 ns REMD simulations, confltatghe hairpin can adopt a
native-like structure, albeit with a lower probability than unfolded state. We believe that
optimization of OPERA should stabilize the structure angtgee the thermodynamics of
large RNAs.
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Figure 2. MD-evolution of the RMSD with respect to the NMRustiure of LEOR (a) and 2G1W (b). The RMSD
is calculated on the P, O5’, C5’, C4’ and C1’ particles usimg nucleotides 2-21 (the first and last are flexible by
NMR). (c) 2G1W : superposition of the NMR structure (pink) tie MD-structure found at 36 ns (blue). This
structure has 3 among 7 native H-bonds. (d) 1EOR : supeigosif the NMR structure (pink) on the center of
the second cluster predicted by REMD (green).
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The origin of high pathogenicity of the emerging avian inflze HSN1 due to the -RRRKK-
insertion at the cleavage loop of the hemagglutinin H5 wadistl using molecular dynamics
technique in comparison with the non-inserted H5 and H3 Bawith furin active site. The
cleavage loop of the highly pathogenic H5 was found to birzhsfly to the furin cavity, serving
as a conformation suitable for the proteolytic reactionp@&imentally, the -RRRKK- insertion
was also found to increase the cleavage of hemagglutiniaray. fThe simulated data provide a
clear answer to the question why inserted H5 is better ctebydurin than the other subtypes,
explaining the high pathogenicity of avian influenza H5N1.

1 Introduction

Proteolytic activation of the hemagglutinin (HA) is essahtor viral infectivity and for
spread of the avian influenza virus. This process is deteunlly a cleavage reaction at
HA's cleavage site, a conserved arginine, by host protealsesgrtion of the -RRRKK-
residues into the low pathogenic avian influenza (LPAI) e site is known to po-
tentially activate infectivity of viruses, i.e., the LPAlruses, which then become high
pathogenic avian influenza (HPAI) viruses, allowing highigulent strains to be cleaved
by furin, an ubiquitously expressed protease.The proposedage mechanism is shown
in Fig. 1. Understanding of this fact, why furin cleaves thsdrted hemagglutinin strains
better than non-inserted strains, is the goal of this stddherefore, molecular dynamics
simulations were carried out for the three complexes, HFR5LPH5-FR and LPH3-FR.
The investigation was focused to intra- and intermolecul@aractions and geometries of
the substrate-furin complex, potentially involved in theavage mechanism.

2 Methodology

The initial model for the HPH5-FR loop (RERRRKKRGL) was luilp using the se-
guence alignments and the atomic coordinates of the X-ragtsire (residues 322-331:
NVPEKQTQGL) of the HAO of H3 and dec-RVKR-cmk inhibitor offin® as a template,
performed by using the homology module of the Insight Il peog. For LPAI subtype
H5, the initial structure of the cleavage loop (NVPQRETR®Igs constructed using the
backbone atoms of the HPH5 loop built previously. The'HAIeavage loop complexed
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Figure 1. (A) Proposed cleavage mechanism of HA by furin and definition efs. (B) Loop of HPAI H5 (ball
and stick model) in the electrostatic surface of furin. Baumel red represent positively and negatively charged
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Figure 2. Distributions of the;-dg distances defined in Fig. 1 for the three simulated systeamspking from
0.75to0 2.0 ns in MD simulations.

with furin, generated by all HA heavy atoms of S1-S4, weressimpposed with the crys-
tal structure of the dec-RVKR-cmk inhibitor while the HA lidone atoms of S5-S8 and
S1" — S2" were superimposed with the crystal structure of the HAO lobpi3. MD
simulations for the HA's cleavage loop complexed with futitPH5-FR, LPH5-FR and
LPH3-FR, were carried out using the SANDER module of AMBER 7.

3 Results and Discussion

To search for detailed information on molecular level, sigld structural parameteis €dg

defined in Fig. 1) were plotted in Fig. 2. The structures of ¢henplexes are in detail
described in three regions, the arrangement of the catalysid, the attachment of the
catalytic Ser368 to the reactive S1-Arg, and the formatibthe oxyanion hole. From
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Figure 3. Percent occupations of hydrogen bonds betweangnd the ten HA residues where the residues with
a box around the label represent experimentally detectadsbr the inhibitor-furin complex.

the result, a sharp peak was found only in the HPH5-FR congoledoccurred at suitable
distances, signifying the rigidity of the complex which gheerves as a more appropriate
configuration for the nucleophilic attack. In contrast,tfoe other two complexes the peaks
show a broad distribution and occure at significantly ladistances.

To assess the stability of the hemagglutinin loop binding farin protease, percentage
and number of hydrogen bonds between each HA residue andtikie site residues of
the target enzyme, furin, were evaluated and plotted in ZFigConsidering the role of
the -RRRKK- insertion more hydrogen bonds and a higher p¢age occupation between
the S2-S6 residues of HA and the surrounding residues of fuere found for HPH5-FR
in comparison with the two LPAI systems. This means that RRRKK- insertion can
directly help to hold the substrate in place.

4 Conclusion

In conclusion, the -RRRKK- insertion in the HPH5-FR, in pautar the two arginines at
S4 and S6 positions helps directly to hold the HA's cleavamp lin place by forming
strong hydrogen bonds between residues of HA and furin. ddnsequently leads to an
active conformation of the HPH5-FR complex suitable fordbglation reaction and is the
primary source of high pathogenicity of the avian influenzases subtype H5N1.
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We investigated the fundamental molecular-level behaviovater molecules adjacent or very
close to the surface of amyloid peptides, soluble oligonaeid protofibrils. The foucus was

on prospecting a reliable means to predict, measure angpiiatethe magnetic behavior of

such water molecules, especially to differentiate theignegic behavior from that of other,

more bulk-like molecules. The long term goal of this will bevdloping a diagnostic method

to enable magnetic resonance relaxation measurementee@ the nature of the surfaces to
which those water molecules are associated, and hencevid@@probe of the extent of tissue
damage in the early stage of development of conformatioisebdes, such as the Alzheimer’s
disease.

1 Introduction

At structural level, proteins display both binding (hydndjz) and unbinding (hydropho-
bic) sites for water molecules. Most of hydrophobic moetee buried inside the struc-
ture when proteins are in native states. They become expulsed proteins unfold (or
misfold), which weakens the effective interaction of suriding water with the protein
surfacé. Recent studiéssuggest that isomers bearing pathological defects, i @eins
exhibiting poorly dehydrated backbone hydrogen bondsydemnsy 4, are characterized
by an average energy of hydration that is also significarglolv that corresponding to
native proteins. Though these structural defects geydrdaéiract with nearby water, the
entropy of this water is unexpectedly large and the resieléimee much shorter than at
hydrophilic sited. Thus, both unfolded/misfolded and pathogenic proteitsbéxan in-
creased number of surface patches where the local watessssteuctured and has an
increased mobility®, reminiscent of the bulk solvent. Moreover, energetic @ersitions
suggest that isomers with considerable bulk-like hydratemd to aggregate Here, we
summarize the results of our initial studies which suggeat tifferent morphological
states of aggregated isomers differ by hydration distigouprofiles and water magnetic
resonance (MR) signals. The results help explain the MRrashpatterns of amyloids,
a subject of long controversy, and suggest a new approadtiéotifying unusual protein
aggregation related to disease.

Extracellular amyloids (Abeta) deposits are prominent and universal Alzheimeés's d
ease (AD) features but plaque abundance does not refleattind degree of the neuronal
injury in AD patient§. The incipient assemblies formed by Abeta peptides insideeéll,
such as soluble oligomers and fibrillar tangles, also haterpmeurotoxic activities, and
in fact, may be the proximate effectors of the neuronal inand death occurring in AD
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Figure 1. The relative change in pixel intensity correspogdo distributions of constrained water in local en-
vironments containing normal protein background, soludtgyloidogenic anssemblies, protofibrils and large
protein aggregates.

Thus, the most visible manifestation of amyloid accumalatii.e. extracellular Abeta
plagues, could actually be a defense mechanism employeaid serious tissue degra-
dation while the major toxic effects to the gray and white teraheurons are mediated
by soluble Abeta composites and protofibrils. Thereforeetiping strategies to detect in
vivo the Abeta structures at an early stage are crucialéatimg, inhibiting the progression
of disease and preventing some of the devastating effe&b of

2 Methods

Based on the scaled particle therye derived a mathematical algorithm that describes
the recompartmentalization of water following the additiaf test isomers in the local
environment and the association of these isomers in congsosf given structures (i.e.
oligomers, protofibrils and large protein aggregates). Mlaghematical equations for the
recompartmentalization of water are given in terms of tlraldydration fractionsf) and
packing density £) of the newly formed molecular assembly, as described puesly’ .
Then, we use standard relaxometry equatiomsorrelate the intensitys() of the magnetic
relaxation response of water withand p for each structural archetype (single isomers,
oligomers, protofibrils and large aggregates). Based anrttadel, we investigated the
relationship between the intensity of the magnetic respotiee amount of constrained
water in the local volume and morphological charactesstitthe protein system. The
predicted magnetic signal intensity for these systemsrigpared to that corresponding to
native protein background (control).
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3 Results and Discussion

The present study suggests that a cellular environmengitomg pathogenic proteins and
distinct morphological structures formed by the assamiatf these proteins differ from
normal protein background by the quantity of water strusdiat interfaces. The reorgani-
zation of hydration water molecules leads implicitly to distribution of water molecules
among the characteristic clusters of the relaxation tfiesNormally, such differences
lead to distinct MRI signals. The fact can be inferred from.Hi where we show generic
curves of the relative change in pixel intensity correspogdo the magnetic response
of constrained water in various local environments (i.etnmad protein background, test
isomers, oligomers, protofibrils, large protein aggresigt¥Ve can notice that the hyper-
intensity curve corresponding to compact aggregates isldsest to the pixel intensity
of bulk water. Therefore, regions containing small comgagregates are likely to show
brighter than the normal protein gray background on MR insag@n the contrary, the
formation of large, floppy protein aggregates by includiaggé amounts of test isomers
and caged water, leads to the occurrence of hypo-intensith® characteristic MR im-
ages. Hence the MR images of such microscopic environmahtshew darker on the
grayscale. The characteristic magnetic sensitivity foystesn containing additional test
isomers in a morphological state as described in above issepted in Fig. 1 by the bot-
tom curve. We must note that this hypo-intensity signal erafsom the contrast produced
by the presence of iron in plaqu€s'*. The present study shed light on a current contro-
versy, namely that amyloids can display both dark and bsgbts when compared to the
normal, gray background tissue on MR imatje's. In addition, our findings suggest that
the bright spots are more likely to correspond to amyloidhéir early stage of develop-
ment.

4 Concluding Remarks

The present results are in support of existing experimetatd® 1314 showing that the
presence of iron in amyloid plaques is not always decisivelétecting the AD. We have
presented compelling theoretical evidence that placimtitiathal constraints on water dy-
namics (i.e., caging water) and/or redistribution of coaiged water fractions also play a
significant role in correlating the intensity of the MR sigmath the amyloid load. Our
results help to better understand various biophysical er@sins that set the MR signal
of water surrounding amyloidogenic proteins and their nhadgregates. Our study may
prove useful in generating new testable statements onmstances related to the presence
of amyloidogenic proteins in a given aqueous environmerttgfess in understanding the
chemistry effects induced by such molecular entities onadyins of surrounding water
in combination with data from new MR spectroscopic methadgietermining the over-
expression of abnormal proteins and their state of associ@tthe cell can help designing
efficient MR imaging protocols to be used in detecting thdyeaiolecular alterations in
amyloidogenic diseases.
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Around one third of a typical genome consists of membrantgepra. Misfolding of membrane
proteins can often be linked to diseases, so that it is oft gmgaortance to understand, which
residues and interactions are crucial for its stability. Wéeeloped a coarse-grained model
to predict stabilizing regions in membrane proteins. We jgara the model to experimental
data from Single Molecule Force Spectroscopy (SMFS) aedalitire to evaluate the effects
of mutations on function and stability of five membrane prae The aim of this study is to
describe all these data in an unified context, the intenacimergies of amino acids in a coarse
grained model to gain a deeper insight into membrane patein

1 Introduction

Integral membrane proteins account for about 20%-30% obffen reading frames in
a typical genome but, despite their central importance lloorganisms, the number of
known structures remains small giving raise to the needdqusence based methods.

Single Molecule Force Spectroscopy (SMFS) allows detgatind locating interac-
tions stabilizing a membrane protein. During continuoustshing of the molecule, the
applied forces and the extension are measured. The residtaa-distance curve reflects
subsequent unfolding evehtshe so called force peaks. The so-called Worm-like-chain
model (WLCY relates the position of these unfolding barriers to posiim the primary
sequence of the protein. Besides the SMFS data, there arefanhoitation experimentsin
the literature, where the effect of a certain mutation ohitg and function of a membrane
protein is discussed.

In this work, we developed a coarse grained model, whichlestaldescribe the above
mentioned experimental results. To the best of our knovdetlys is the first time, that
such a simplified model is used for predicting correctly Udifty barriers and estimating
the influence of mutations based on sequence.

2 Methods

For the representation of a protein, we constrained outsdlie C,/Cs atoms of each
amino acid. To estimate the energy of the interaction betveesino acids, we defined a
solvation energy, based on the probability distribution for each amino acidinmem-
brane protein to be inside (solved) or outside of the préteinside means facing other
amino acids, outside means facing the phospholipids. Thebgwtion of two solva-
tion energies results in a contact energy for an interadt@ween two spatial neighbored
amino acids.
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Based on the tertiary structure we estimate the en&rgyith which each amino acid
interacts with the rest of the protein by summing up the adton energies betweémand
all other amino acids. Two amino acids interact if they aredir@ct neighbors in sequence
and if their G atoms are less thadd apart. This gives an energy profile containing the
energyFE; for each amino acid in the protein. A deep valley in this peofiives raise to an
energy barrier in the model.

To estimate the influence of a mutation based on the sequehger® calculate a so
called solvation energy profile, which contains for eachranacid: the solvation energy
e;. This profile is, in contrast to the energy profile, indepenidem the tertiary structure
of a protein.

3 Results

For our analysis, we used the following five membrane prsteiBacteriorhodopsin,
Halorhodopsin, Bovine rhodopsin, N&AH antiporter and Aquaporin-1. Up to now, these
are the only proteins, for which SMFS data are available.

3.1 Prediction of Unfolding Barriers

For the five proteins mentioned above we predicted the lvarkiased on their energy
profiles. For the comparison with the experiment, we comsidie¢he published barrier
position from the experiment plus an experimental errahgf, = +4 amino acids. This

is due to systematic errors in the experiment like intrimsigvement of the cantilever.
These errors are reported to be in the range of 3-7 amino“addpending on the used
cantilever.

On average 61% of the barriers are detected by our method. téhrbatween a pre-
dicted barrier and an experimentally determined one ibskeed if their boundaries are
within a certain distance.

A remarkable result is the following: all unfolding barsdor all proteins that, accord-
ing to SMFS measurements, are found having 100% of probabilioccurrence (main
peaks) are correctly predicted by our method. This sugdieatsnajor unfolding barriers
in the experiments are due to energetic reasons. Minor ®eeatmore difficult to detect
with this approach.

Energy profiles can also be used for detecting smaller &atdgjlregions in a protein.
The helix C in bacteriorhodopsin for example is known folifitportant part in the proton
pumping pathway The mutations T90A and T90V in helix C for example decrease t
activity down to 10% and 20% compared to the wild p&his is thought to be partly
due to the missing stabilizing interaction of the threonih@erestingly, alanine and va-
line are both more repulsive in our model than threonindfitSEhese mutations have a
destabilizing effect on this region in helix C.

3.2 Predict Effects of Mutations Based on the Sequence

To quantify the ability of the model to predict the influenderautations based on sequence
alone, we screened the literature for single point mutatievhich influence stability or
function of the used membrane proteins. For this, we ap@igext mining approach,
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which searches in PubMed abstracts. We only used the ptibhisawhere a single point
mutation was discussed in the context of stability or stigbiklated function. If an ap-
propriate mutation was found in the literature, we compd#nedsolvation energies of both
residues to decide, if the mutation was stabilizing, sligbtabilizing, slightly destabiliz-
ing and destabilizing. 25 out of 35 mutational effects régain the literature correlate
with the predictions from the energy profiles and thus carelsed to stability issues in
terms of amino acid interactions.

4 Summary

We used a coarse grained model to assess the influence cicitives between amino
acids in membrane proteins. It is based on the probabilgtridution for an amino acid
to be inside or outside of an membrane protein. We found tlegomSMFS unfolding
barriers are related to strongly interacting amino acidsgneas minor barriers are related
to non-energetic reasons. The activity of bacteriorhoutogsd the effect of mutations at
site Thr90 is related to an increase of the interaction gnefghis amino acid if mutated
to Ala or Val. Although these two use cases require knowledyrit the tertiary structure
of a protein, it is possible to extend the scope of the model purely sequence based
method. Compared with a list compiled from literature, 2% ou35 mutations can be
related to energetic reasons in the model by this sequemligexpproach. Concluding, the
proposed coarse grained interaction scheme can be apptiedssfully to a wide range of
applications in the context of membrane proteins.
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Loops are abundant in native RNA structures and prolifeciise to the unfolding transition.
By including a statistical weight- £~ ¢ for loops of length? in the recursion relation for the
partition function, we show that the calculated heat cdpalgpends sensitively on the presence
and value of the exponent even of short tRNA. For homo-RNA we analytically calculéte
critical temperature and critical exponents which extahiton-universal dependence @n

We calculate the partition function of the RNA secondaryature using a formulation
that allows to accurately include the statistics of terriimernal, as well as multi-loop’s.
The statistical weight of a secondary structure depends®frée energy of base pair for-
mation, which has been determined experimentabiyt also on the entropy loss of loop
formation. Polymer theory predicts the configurationalgigtiof a loop consisting of
bases to decay #s © where the exponeiatis universal. The loop exponentdgie., = 3/2
for an ideal polymer andsaw = dv ~ 1.76 for an isolated self avoiding loop. However,
helices which emerge from the loop decrease the number digcoations and conse-
quently increase even furthef For instance, one obtains = 2.06, c; = 2.16 for the
two types of loops which appear in the native structure obytRINA-phe, see Fig. 1b.

«— terminal loop
internal loop

a)

=
o

C / (kcal/(mol - K))

pseudo-

stack/helix

[ ]
<]

9000 o000

Figure 1. a) Schematic representation of a secondary RNi&state. Solid lines denote the RNA backbone,
broken lines base pairs, and gray lines non-nested backbamés that are counted by the variablé; here

M = 11. b) Experimental heat capacity of the tRNA-phe of yeast faCNconcentration20 mM (triangles)
and 150 mM (squares}. Solid lines show results using Eq. (1) with loop exponents: 3.0, 2.16, 1.76, 0
(from left to right), compared with the results from tkiienna package ° which uses a linearized multi-loop
entropy (dashed curve). The dotted curve is obtained with 3 and the same energy parameter set as for the
solid curves, except for the loop initiation penalty whichsromitted. The inset sketches the low-temperature
secondary RNA structure obtained from Eq. (1) in agreeméthtexperimental crystal-structure studies.

201



A valid secondary structure is a list of all base pairs, wheseudo-knofsare not
allowed,i. e. for any two base pair§i,j) and(k,l) with i < j, k < I, andi < k we
have eitheri < k < I < jori < j < k < [. In our notation, the canonical partition
functionQ%— of a sub-strand from bageat the 5’ end through at the 3’ end depends on
the non-nested backbone-length” & see Fig. 1a. The recursion relations for the partition
function read then

J—Nicop
M+1 _ AM M 0
Qi1 =Qi; + Z Qix-1Qk, 41 and (1a)
k=it M+1
(J—k—Nioop)/2 ( : j—k—1—2h QP i
0 _ k,j+1 +1+h,j—
Qkj+1 = > Wik+h,j+1-h) > (m+2)° (1b)
h=1 m=1

Eq. (1a) describes elongation of an RNA structure by eittigliray an unpaired base
(first term) or by adding an arbitrary sub-stra@iﬂl that is terminated by a helix.
Eq. (1b) constructQQJ+1 by closing structures withn non-nested bonds, summed up
in QY145 bY @ helix of lengthh, which is weighted with a sequence dependent
Boltzmann factorw. Nioop = 3 is the minimum number of bases in a terminal loop. The
unrestricted partition function of the entire RNA is given By = >, {)‘fN. We im-

plement the recursion relation, Eq. (1), numerically usirfgee energy parameter efn
Fig. 1b we show the experimental heat capacity of the tRNA-phyeast compared with
our predictions from Eq. (1) using = T9?(kgT In Zy)/0T?. The heat capacity peak
corresponds to the gradual melting of the secondary streicAlthough the RNA consists
of just 76 nucleotides and is therefore far from the thernmaghyic limit where one expects
asymptotic effects to be important, the loop exponehas drastic effects. Increasing
from ¢ = 0 to ¢ = 3 destabilizes the structure and decreases the melting tatmpe by
more than30 K (solid lines). It is difficult to directly compare experimahand theoret-
ical curves as the energy parameters were determined/lalaCl concentratiof) while
experimental data is only available #imM and 150 mM. Current implementations of
secondary structure prediction or partition function aédtion approximate the entropy
for multi-loops by an affine functiom(y* M=) ~ &, 4 6, M.%>° This in principle corre-
sponds to the usage of the loop exponest 0, as is corroborated by the near agreement
of the results from the Vienna pack&geroken line) with the results from Eq. (1) using
¢ = 0. Most strikingly, the melting temperature as well as thettviahd the height of the
peaks depend dramatically on the loop exponent. Similaietthave been carried out for
DNA° where the loop exponent has a much weaker effect on deratucairves.

In a second step, we now consider homo-polymeric RNA, whichtie modeled exper-
imentally by using a synthetic sequence like AUAUAU. .. Tloaljs to extract the critical
asymptotic behavior embodied in Eq. (1) in the thermodygdmiit. We simply give a
statistical weightv = exp[—¢/(kpT)] to each base pair. This renders the system transla-
tionally invariant and allows to writ€);”; as@Q}/ with N = j — i being the total number
of backbone segments of the sub-strand ranging frahtough;. This can be viewed
as a coarse-graining approximation for natural or randorA Rbbve the glass transition.
To proceed, we switch to the grand canonical ensemble wherare able to study the
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Figure 2. a) Phase diagram for three different values of @b kxponent as a function of the base pairing
weightw and force fugacitys. The dots denote the unfolding transition in the absencextefeal force,i. e.

s = 1, which is considered in b) and c): Temperature dependenteedd) specific heat’ and c) fraction of
bound base8 for ¢ = 2.3. The insets show the third derivative¥” = d3C/dT? and¢’”’ = d30/dT which
clearly exhibit singular behavior. Squares denote nurakeealuation of Eq. (2). The leading (solid lines) and
next-leading (dashed line) order of the expansion ardlincare shown, according to which’”” diverges with
the exponeng = 2/3 for ¢ = 2.3 and@’” is characterized by the exponent= 1/3.

thermodynamic limit. The grand canonical partition can alewalated exactly

Z(z,5) = i i Novqu = e ®)
= 1 — szk(2)

wherex(z) is determined by the equatien= 1 + w/kLi.(zk). Lic(z) = Y07, 2™ /n¢
is the polylogarithm. The force fugacityis s = 1 if no force is applied to the ends and
s > 1if the molecule is stretched. In Fig. 2a we show the resultingse diagram of RNA
in terms ofw ands for different values of the loop exponent We observe a very weak
phase transition only < ¢ < ¢* with ¢* ~ 2.479. Forc < 2, the RNA is always in the
folded state, whereas fer> ¢* RNA is always unfolded, irrespective of the temperature.
The critical exponents as well as the order, which is at l&ast of the phase transition
depend on the loop exponenand are calculated exactly.

The conclusion is that while the dependence of critical progs on the loop exponent
c is experimentally and numericalfydifficult to access and therefore largely irrelevant,
the dependence of non-critical propertiescas important.
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We performed Replica Exchange Molecular Dynamics (REMBiusation on a 24-residue am-
phipathic peptide in order to investigate the equilibrivomformational distribution in different
environments.The structure of the peptide has been debigmeh that it adopts &-hairpin
structure.Experimental findings show that it adapt§-eairpin at the air/water interface.It has
the amino acid sequence of -KICVRWQYRVQ (D-P) GDICFDVNFDVIH which D-P and G
residues contribute to the formation ofaturn structure.We observe that the peptide adapts to
coail structure in vacuum whereas it mostly adaptgoairpin in bulk water.At the air/water in-
terface it oriented itself in such a conformation that thdrophobic residues are lined towards
the air, on the other hand, hydrophilic residues are linegtds water.

1 Introduction

Amphipathic peptides have alternating hydrophobic anddyiilic residues in a recur-
ring pattern such that the periodicity in this recursionasiges the non-local interactions
among the different types of residues, and this organizatinong the residues leads to
the formation of the type of the overall conformation of theppide.The equilibrium con-
formational distribution of amphipathic peptides, as veallothers, varies in different en-
vironments. Understanding of the probable source of diffee in the conformational dis-
tribution probabilities is important for both the designnaivel peptides and nanomaterials
with desired features.

2 Methods

REMD simulations for the systems studied were performed with the Gromos 584t
field? implemented in Gromacs (3.3.1) simulation packafiee SPC216 water modahnd
NVT ensemble were used for all types of simulations. The t&naprre ranged from 278
K to 320 K in REMD simulations.The exchange probability (qorted as the ratio be-
tween the successful exchanges and the total number of)tviatied between 10% and
20% for each pair of neighboring replicas; the average exgha@robability was approx-
imately 11%, a level ensuring an efficient exploration of teaformational spaceThe
water simulation was performed for 80 ns whereas the vacumlation was performed
for 10 ns.After equilibration was reached, the data wasect#d and clustered by using
the algorithm as described in Daura et® with the backbone rmsd of 0.15 and 0.20 nm
for bulk water and interface simulations, respectivelye Becondary structure assignment
was made using the STRIDE algorithm
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3 Results

3.1 Vacuum Simulations

The simulation was started from an extended structure, &ad @pproximately 1 ns, it

collapsed and remained in a coil structure for the remaipargof the simulation. For this

reason, the conformations and the corresponding perceptadpability values obtained
in vacuum simulation are not given here. These results stdat the peptide need an
assistance of water molecules to adapt to propgskdirpin.

3.2 Bulk Water Simulations

The peptide adapts mostly to propogetairpin in bulk water indicating the importance of
water molecules for the formation of that structure.Howgitaas also preference for other
conformations other than this preferr@ehairpin structure. These conformations emerge
as a result of a reduction in the number of intra-moleculairbgen (H) bonds.These re-
sults suggest that water molecules and the number and tlteieetypes in which the
H-bonds are made are important for the formation of#kern structure. In this structure
(-turn is constructed by D-Proline and Glycine residues. fbipefour conformations are
given in Fig. 1.

s L
Cluster#1 Cluster=2

Cluster#3
Clusta=4

Figure 1. The top four conformations of the peptide obtaimeoh simulation in bulk water at 300 K. Color codes
represent the secondary structure type of each residup.iFindicated by green, coil is indicated by white, and
sheet structure is indicated by yellow color. The C termirassdues are indicated in CPK representation.

The percentage probability values of these top four confions are given in Table 1.
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Cluster ID Clusterl| Cluster2| Cluster3| Cluster4
Probability (%) 32.0 8.0 7.84 6.0

Table 1. The percentage probability values of the top fonf@wnations of the peptide in bulk water at 300 K.

3.3 Interface Simulations

The interface simulation was started from a location clogb¢ interface, and the peptide
remained there for the rest of the simulation.The top fomfaonations are given in Fig. 2.

Chistersd

Choster=2 C_\

g
e

~

Chiztersd

=2

Figure 2. The top four conformations of the peptide obtaimedn simulation at the air/water interface at 300 K.
Color codes represent the secondary structure type of eagtue. Turn is indicated by green, coil is indicated
by white, and sheet structure is indicated by yellow color.

The percentage probability values of these top four conédions are given in Table 2.

Cluster ID Clusterl| Cluster2| Cluster3| Cluster4
Probability (%) 41.0 27.2 7.9 7.7

Table 2. The percentage probability values of the top foafawnations of the peptide at the interface at 300 K.

The peptide was aligned parallel to the interface, and it eva@ntated in such a way
that the hydrophobic residues were lined towards the airedseboth the hydrophobic and
hydrophilic residues were lined towards water as showngn &i However, these are still
preliminary results; the equilibrium has not been reachetd y

4 Conclusion and Future Work
We identified the equilibrium conformational distributmnf a 24-residue amphipathic

peptide via REMD simulations in vacuum, bulk water, and dtaiter interface.The pep-
tide adapts to different conformations in different enaiments. Understanding of the be-
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Figure 3. The orientation of residues at the air/water fater. The hydrophobic residues are colored in blue,
basic residues are colored in green and the acidic residees®red in red.

havior of peptides in different environments will help dgsof novel peptides and nanoma-
terials with desired features.We are also simulating difitamphipathic peptides having
different amino acid sequence to investigate the effeceésifilue specificity on the forma-

tion of overall conformations of peptides.Moreover, we pl@nning to make simulations

at interface with larger number of peptides to understaedbthavior of both inter and

intra molecular interactions.
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Based on amino acid based pair-potentials and intermaleeulergies we calculate score dis-
tributions for protein-protein complexes that exist inutatand those which do not exist. The
distributions of the two groups are then found to be diffeiarmaximum and in shape. This
opens the possibility to discriminate between complexatehist and those which do not.

1 Introduction

1.1 From Protein Structure to Complexes

Proteins are an integral component for most of the mechaxtiskng part in the cell. One

important aspect in the research on proteins is their tdieensional structure. The most
common methods to determine the structure are X-ray dography and NMR spec-

troscopy, and due to them the number of known protein strastis actually rapidly grow-

ing. However, cellular functions are rarely carried out mgte proteins but by complexes
of several interacting proteins. High-throughput methfodsletecting protein interactions,
like yeast2hybrid, produce a huge number of such expecitgiprprotein interactions.

Unfortunately it is not possible to determine the structifoe all of them by experimental

methods because there are limitations concerning largensient complexes. In addi-
tion, if possible, the experimental structure determoraibf complexes is a very time-
consuming and challanging process. For that reason cotigmeatly approches such as
docking algorithms to predict the structure of proteintpho complexes are needed.

1.2 Docking

The hypothesis underlying docking predictions is that tave complex structure is the
state with the lowest free energy accessible to the systdmereTare quite different ap-
proches on how to develop docking algorithms but the comrbasic idea is to first do a
sampling step followed by a scoring step. Scoring meansyatyae the putative complex
structures generated in the first step with regard to chdmanchphysical aspects. Selecting
suitable aspects and weighting them in an appropriate wayésof the great challenges
in docking. The aim is to rank all putative structures in a wagt most of the native-like
structures are found in the top part of the ranked output.

2 Motivation

Since protein complexes play a major roll in cellular pr@essand experimental meth-
ods like yeast2hybrid are not always applicable and ofteriain a considerable number
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of false positive§ there is a need for computational methods predicting prgieotein
interactions.

On the other hand, methods providing the three-dimensginaiture of known protein
complexes (docking algorithms) are already availablehéirtscoring step a great amount
of different possible complex structures of the same twdeqing is compared to choose
those that are near-native. If this is possible, it must despossible to do this analysis on
complex structures of different protein pairs and by thisigiermation on the probability
that two specific proteins do interact at all. That means ieotvords to do docking with
different proteins, even those that do not interact or ateknown to do so and finally,
after the interpretation of the structures, get as a resudther two proteins are suggested
to built complexes in nature or not.

This is actually a computational method to predict profgiatein interaction.

3 Method and Results

3.1 Overview

For becoming able to predict protein-protein interactidratwve actually need is a method
that discriminates between complexes that exist in natuaéve complexes) and those
that do not (false complexes). This difference is mesure@upy to now) three scoring
functions (amino acid based pair-potentials, van der Weradsgy and electrostatic energy),
and becomes apparent in different score distributions div@ and false complexes (see
figure 1).

] [] Native
| M| n [l False

normalized frequency

| nn_mm{ [T

T 11 1T 17T 1T 1T 1T 17T 17T 17T 1T T T 1T 1T 17T 1T T T T T 1T 1T 17T 1T 1T 17T 1T 1T 17 17 1T 1T 1T 1T 17T
-0,8 -0,6 -0,4 02 0.0 0,2 0,4 0,6 0,8 1,0 1,2

score

Figure 1. Score distributions from amino acid based pateitals.
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3.2 Getting Native and False Complexes

Native structures can easily be obtained from the Nussiratalést that contains over
2000 non-homologous protein-protein complexes, wheteae tdoes not exist a database
for false complexes. For this reason we produced them onwnrbhy somehow abusing
the docking program HADDOCK We docked proteins that are not supposed to build
complexes. This ensures that even the false complexestuelrest possible confirmation
and hence really comparable to the native ones.

3.3 Scoring Functions

We useamino acid based pair-potentialsthat were obtained by Wolowski et 3l.and
calculated distributions for the native complexes fromilussinov database and our self-
produced false complexes. In figure 1 it can be seen, tha¢sdémm the two groups are
not totally separated, but that there is an evident diffeeen the shape of the two curves.

Van der Waals energyandelectrostatic energyare both calculated between all inter-
molecular atompairs in the complex and can be combined.r Ehei is called interaction
energy. We have not yet obtained score distributions faer, thit the two examples in table
1 show, that the energies for the native complexes are cenatity lower then for the false
ones.

Receptor | Ligand Eint = Evqw + Eelec
[kcal/mol]

Barnase | Barstar -264.4

Barnase | Soybean trypsin inhibitor -242.4

Barbase | APPI -214.0

Barnase | Ovomucoid 3rd domain -192.0

Barnase | Pancratic secretory trypsin inhibitor-189.4

Table 1. Intermolecular energies of one nativ complex (stlad grey) and four false complexes. The energy is
always the average of ten complexes that were top rankedtfredocking algorithm.

4 Conclusion

We could show that it is possible to find scoring functiong tan discriminate between
native and false protein-protein complexes. By combimatibthe three presented scores
and maybe even more in future, it will be possible to predicether a hypothetical com-
plex can be supposed to exist in nature or not.
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We present an analysis of the flexibility characteristicshefribosomal exit tunnel using con-
cepts grounded in rigidity theory. For this, a new topolagiicetwork representation of RNA
structures had to be developed that allows analyzing RNAbiléy/rigidity based on constraint
counting. Applied to the large ribosomal subunit, constrabunting provides new insights in
atomic detail into the stability characteristics of thertah which can be linked with the tunnels
role in co-translational processes.

1 Introduction

RNA structures are highly flexible biomolecules that canamgd dramatic conforma-
tional changes required to fulfill their diverse functionales. The determination of RNA
structures, e.g., by X-ray crystallography provides ushwiiatic snapshots along these
transitions, whereas the underlying dynamical processmsin largely unclear. To get a
more detailed view of the dynamics of biomolecules or tonilmate experimental data,
molecular dynamics simulations are very useful and widglgliad. Unfortunately, the
simulations are still too computationally expensive toeistigate large macromolecules
like the ribosomal complex on a routine basis. As a much mféfieient alternative,
concepts from graph theory can be used to determine flexitalerigid regions within a
structure! Thereby, a biomolecule is modeled as a topological netweHere vertices
(joints) represent atoms and edges (struts) representecivand non-covalent bond
constraints (strong hydrogen bonds, salt bridges, andopydibic interactions) as well as
angular constraints. Modeling non-covalent constraiptgapriately is detrimental to the
success of the analysis. Given a network representaticastacémbinatorial algorithm,
the pebble gamg can then be applied to determine the number and spatiailbdittm
of bond-rotational degrees of freedom in the network, whieim be related to rigid
regions and flexible links in between. Modeling non-covatamstraints appropriately is
thereby detrimental to the success of the rigidity analyisishis context, rigid regions are
those with a well-defined equilibrium structutevhereas biologically important diffusive
motion is expected to occur at the flexible regions. At a fiights rigidity analysis says
nothing about the direction and magnitude of existing nratidHowever, the identification
of flexible regions on a bond level gives insights into theatoan of possible motions or
how flexibility characteristics change upon complex forimaf -6
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Until recently, the approach, implemented into the FIRSfvgare packagé has been
successfully applied to the protein world, whereas a thgiowalidation on RNA struc-
tures has been missing. Yet, the structural stability ofgins (dominated by hydrophobic
interactions) and RNA structures (dominated by hydrogermbsand base stacking inter-
actions) is determined by different non-covalent forcesre;lwe thus aim at developing
a network representation of RNA structures that allows &iably determining flexible
and rigid regions within these biomolecules. We then apigligity analysis to the large
ribosomal subunit to gain insight into the ribosomal exitrtal’s role in co-translational
processes.

2 Results

2.1 ATopological Network Representation for Analyzing Fleibility Characteristics
of RNA Structures

a) 7_
S RP=0.04

B

»
(=}
8]
W
~
w
=)}

| hydrophobic
, constraint

FRODA fluctuation [A]
S = N W kA W O

NMR fluctuation [A]

Figure 1. a) Topological network representation of a cazadrA-form RNA. Constraints between nearest neigh-
bors are indicated by straight lines, constraints betwest nearest neighbors (angle constraints) by dashed
lines. For reasons of clarity, angle constraints are ordljcated in the sugar and base scaffolds, and hydrogen
bonds between bases are omitted. Hydrophobic constramisdicated by black dashed-dotted lines. Flexible
hinges are shown in red, minimally rigid regions in greerd averconstrained regions (which contain redundant
constraints) in blue. b) Atomic fluctuations predicted byCHB simulationd® vs. conformational variabilities

as measured in NMR for RNA structure 1P50. For the FRODA satiauis, a topological network representation
according to ) the protein-based parameterization anthé)RNA parameterization was used.

In a topological network representation a constraint isezipresent or not. To pre-
dict reliably the flexibility characteristics of RNA struces, parameters had to be devel-
oped for when hydrogen bonds and hydrophobic interactiomsaluded as non-covalent
constraints. These parameters were validated based oniragpéal mobility data of a
tRNA4SP structure and all NMR-derived ensembles of RNA structureish(a chain
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length > 40).” We found that restricting the number of base stacking icteras be-
tween sequentially adjacent bases to one is crucial anchgltibphobic interactions in
general should be considered if the distance of two hydrbjgratoms is smaller than the
sum of their van der Waals radii plus a threshold of 0X1Fhe resulting topological net-
work representation for a canonical A-Form RNA is shown igufe 1a. Compared to the
protein parameterizatioh? the new parameters prevent the RNA network representation
from being overly rigid (Figure 1b). Further details abdu tunderlying rigidity theory
and the validation on RNA and protein structures have besarited elsewhere® 89

2.2 Flexibility Characteristics of the Ribosomal Exit Tunnel Analyzed by Rigidity
Theory

\ , - Tunnel
exit

Figure 2. Color-coded representation of the flexibility retrderistics of the ribosomal exit tunnel obtained by
constraint counting. The coloring of the backbone atom&®MRNA part is according to the flexibility index of
the P atoms and according to thg @toms in the protein part. Blue color indicates overcaiséd regions and
red color flexible regions.

The rigidity analysis can easily be applied to large biornoles like the ribosomal
structure, which consists of more than®1toms. The computational time amounts to
only minutes in this case. The analysis gives new insightgamic detail into the func-
tional role of the ribosomal exit tunnel, e.g., during pintsynthesis. Figure 2 shows a
color-coded representation of the flexibility charactérssof the tunnel backbone. Blue
color indicates overconstrained regions, green colortasias(minimally rigid) regions,
and flexible regions are colored in red. The approach idestifirge parts of the tunnels
neighboring regions to be rigid. Remarkably, this holde tiwr all high resolution struc-
tures of the ribosomal exit tunnel of different organismikakde in the PDB data bagé:!3
Even more striking is the finding of conserved local zonesailfile residues within the
tunnel: Clusters of flexible tunnel components are locatethé first half of the tunnel
and around the tunnel exit. Interestingly, these regionsespond to previously identified
folding zones within the tunnéf This striking agreement between tunnel regions with low
structural stability and observed folding zones impliest thdeed secondary structure may
be stabilized entropically there through local conformadil adaptability of the ribosomal
exit tunnel.
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The aggregation of the peptide amylgsd¢A3) into fibrils is considered to be a key event in
Alzheimer disease. Zn(ll) ion binds the N-terminal segnmai 3 peptide (region 1-16) and
influences its aggregation behaviour. Many experimentaleeces revealed that Zn-binding
involves the three histidine residues (6, 13 and 14). AsHerfourth ligand, instead, different
candidates have been proposed: Asp 1, Arg 5, Ser 8, Tyr 10 AndliG Here we present the
results obtained bgb initio molecular dynamics simulations (Car-Parrinello methd®0® K
of Zn(l1)-A 3(1-16) system and implications are discussed.

1 Introduction

In the Alzheimer’s disease an accumulation gf peptides occurs and fibrils are formed
in the extracellular space of brain tissues. The reasonec&titcumulation is not known,
but the amyloid precursor protein (APP) is probably invalire Cu transport. Other metal
ions, like Zn, compete with Cu in APP binding: disfunctiomoétal ions homeostasis can
be at the basis of the pathogenesys. Therefore, the inaé@etigof the Cu and Zn binding
sites in APP is important. Both Zn(ll) and Cu(ll) ions binceth-terminal segment of
A peptide (region 1-16). Among the most recent and mostly @ebexperimental data,
NMR results provided draft structures of31-16)-Znt2 complex in aqueous solution at
pH=6.5 and the Zn binding involves as ligands His 6, His 13, His 14dmable groups
and Glu 11 carboxylic group in tetrahedral coordination.

The identification of the fourth zinc ligand is extensivebsbéted in literature: Asp 1,
Arg 5, Ser 8, Tyr 10 and Val 12 have been also suggested adfmbgands participating
in Cu™ or Zn*? chelation by A32. The interplay between ligand flexibility and zinc
guantum mechanics make the study of zinc coordinationd(ilAL6) an ideal arena fab
initio Car-Parrinelld molecular dynamics (CPMD) simulation. The aim of our workds
model the structure of A(1-16)-Zn"?, indicating the fourth ligand.

2 Method

The starting system configurations for CPMD simulationsengenerated from random
walk hybrid Monte Carlo trajectori@of a classical model of A(1-16)Zrt* system, em-

ploying the Amber force-field modified for possible candaligands. We chose four
initial configurations with different fourth ligand: Glu 1Asp 1 (bound to Zn by carboxyl
groups), Tyr 10 and Ser 8 (bound by hydroxyl groups). CPMDuations were made
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using a parallel version of the Quantum-ESPRESSO pacékalgieh incorporates Vander-
bilt ultrasoft pseudopotentials and Perdew—Burke—Emafezxchange—correlation. After
both electronic and atomic energy minimizations, the systas slowly heated up to 300
K and kept at this temperature for 1.6 ps of molecular dynasiimulation. Representative
configurations have been optimized for detailed structiukastigations.

3 Results and Discussion

Optimized configurations for the four Zn coordinations shbet the three histidines (His
6, His 13, His 14) are bound to Zn. Only Ser 8 is displaced, aglfidigand, by a backbone
carbonyl group. By analysing the time evolution of Zn birglatistances measured at 300
K we deduce that: in the single Asp 1 case, one histidine (H)ssldisplaced from Zn,
and this happens when Asp 7 carboxyl group deprotonatesighich then binds more
strongly to Zn (distance oscillations in time are less widéje binding of Zn by carboxyl
groups (Asp 1 and Glu 11 cases) is stable. On the contrarypkybgroup (Tyr 10 case)
binds Zn when assisted by hydrogen bond; as far as this hgdrognd breaks, hydroxyl
group is displaced by nearby peptide carbonyl group, asiistr 8 case minimization. Zn
is almost always in a near tetrahedral coordination.

Zn-His binding is stable, except for His 13 in the very peautiase of deprotonation
of His 14 by Asp 7. Zn binding by hydroxyl groups of Tyr 10 is pide only when
assisted by hydrogen bonds. In solution, the extent of watiusion from the binding
site (favouring intramolecular hydrogen bonds) can stabihydroxyl group as a fourth
ligand. As far as carboxylic groups can approach Zn, theplaée hydroxyl groups and
eventual backbone carbonyl groups. This situation is eepem be different when Zn
is replaced with Cu: the affinity of Cu for carboxylic and canlyl groups is lower than
that of Zn. Zn can displace Cu by the 1-16 portion of the chairshing Cu towards sites
involving residues in different A regions.
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A crucial event of protein folding is the formation of a falgj nucleus, which is a structured
part of the protein chain in the transition state. We denratest correlation between locations
of residues involved in the folding nuclei and locations wfydoidogenic regions. The average
d-values are significantly greater inside amyloidogenidaresg than outside them. We have
found that fibril formation and normal folding involve manjthe same key residues, giving
an opportunity to outline the folding initiation site in pein chains.

1 Introduction

In spite of the fact that each protein has its own uniqueyadkiree-dimensional structure,
some cases exist when there is another rather stable st&ucalled an amyloid fibril.
Although native structures vary greatly from protein totpm, the structures of amyloid
fibrils obtained from different proteins are fairly uniforhe formation of amyloid fibrils
is a case of protein misfolding, in which a protein folds iatoross3-structure instead of
folding into its native structure. In addition to proteirtgat form amyloid fibrilsin vivo
in various "amyloid diseases”, there are many other prstéiat are not implicated in
amyloid diseases but form fibrils vitrol. There is no sequence homology common to all
such proteins or peptides.

Since polypeptide chains can fold into native structuresisfold into amyloid fibrils,
there is a competition between the processes of folding asfiblsing. During folding,
a protein molecule has to overcome a free-energy barriee rmbst unstable structure
corresponds to the top of the barrier (i.e., to the transitimte of the folding process)
The folding nucleus is a structured part of the protein cirathe transition state. Since the
folding nucleus is unstable, it is not easy to investigaéxerimentally. A very laborious
experimental method, which is calleilanalysis, has been developed to determine the
structure of folding nucléi

The goal of this work is to compare amino acid residues whietceaucial for folding
and misfolding processes of the same proteins. As the erpatal data on both folding
nuclei and amyloidogenic regions in the same proteins aaecec we compared exper-
imentally found residues involved in folding nuclei witheglicted residues involved in
amyloidogenic regions andce versa We demonstrate that fibril formation and normal
folding involve many of the same key residues. On averdgealues for amino acid
residues in amyloidogenic regions are significantly gretiten ®-values for amino acid
residues in non-amyloidogenic regions. This result allagi$o search for some residues
involved in the folding nucleus using only amino acid sequeesn
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2 Results and Discussion

2.1 Intersection of Predicted Residues Involved in Amyloidgenic Regions with
Experimentally Found Residues Involved in Folding Nuclei

If amyloid fibril formation is a generic feature of proteiryme common properties of
amino acid sequences possessing amyloidogenic propensiitbuld be observed. There-
fore, we can hypothesize that amyloidogenic regions ofteygcrucial role not only in the
amyloid fibril formation but also in the process of "normatiiding of proteins into their
native structure. We tested whether the experimentallgdamino acid residues involved
in folding nuclei intersect with theoretically predictezsidues involved in amyloidogenic
regions. The list of the experimentally fouddvalues as well as the corresponding mu-
tations can be found at Ref. 3. Experimentally foundalues (larger 0.5) and predicted
amyloidogenic regions can be found at Ref. 4.

We have compared predicted amyloidogenic regions with raxgatally found
residues involved in folding nuclei for those 20 proteinkeprediction of amyloidogenic
regions was made by the previously described method whietligts amyloidogenic re-
gions using only amino acid sequeméeFor each amino acid residue, the method predicts
the number of expected contacts and regions within whictealtlues have a large num-
ber of expected contacts are predicted as amyloidogenis. oAs it was demonstrated
previously, this method is able to predict amyloidogenigioas.

The comparison of the degree of involvement into the foldingleus (reflected in ex-
perimental®-values) of residues in the predicted amyloidogenic andarogloidogenic
regions have demonstrated that there is a reliable diféerenin the predicted amy-
loidogenic regions, the average ovkivalues is 0.410.02 while in the predicted non-
amyloidogenic regions, the average o®evalues is 0.33-0.01 (here and below, the shown
error is the error of averaging which is calculatedﬁswherea is the standard deviation
of the distribution, and n is the number of points). Studetest gives the probability of
4x10-3; thus, the above difference is statistically reliable.

Thus, comparison of experimentally known amino acid ressdavolved in the folding
nucleivs. predicted amyloidogenic fragments indicates that nuideatenters for folding
and for misfolding often intersect.

2.2 Intersection of Experimentally Determined Amyloidogaic Regions with the
Predicted Folding Nuclei

To investigate folding/unfolding behavior of amyloidogeproteins, we have constructed
a database of globular proteins with experimentally rexg¢éamyloidogenic regions. From
literature data, we selected those globular proteins irthvthie position of amyloidogenic
regions is known from experimental data.6 The database noludes seven proteins:
acylphosphatasg2-microglobulin, gelsolin, transthyretin, lysozyme, ngyabin, human
prion. We tested whether the theoretically found foldingleuby our method intersect
with experimentally found amyloidogenic regions. It appsethat 8 of 12 amyloidogenic
regions are situated in folding nuclei whebevalues are large. For several proteins, the
regions with the largesk-values coincide with the amyloidogenic regions.

For amino acid residues in amyloidogenic regions, the gePavalue is 0.58-0.02
while amino acid residues in non-amyloidogenic regionsehidne averag@®-value that
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is significantly smaller (0.480.01). Thus, in amyloidogenic regions, an average amino
acid residue has more than%®f its contacts formed in the transition state (i.e., in the
folding nucleus by our definition). Thevalue obtained with Studenttstest (that is, the
probability that the observed difference is accidentaR4$0—-11 that confirms that the
difference between the averagevalues of amino acid residues in amyloidogenic and in
non-amyloidogenic regions is significant.

Thus, we have demonstrated that amyloidogenic regionsftee predicted to be part
of the folding nuclei in amyloidogenic proteins. Therefore can hypothesize that amy-
loidogenic regions often play a crucial role not only in aoigifibril formation but also in
the process of "normal” folding of amyloidogenic proteinga their native structure, since
amyloidogenic regions compose part of the folding nuclaubése proteins.
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The adsorption of proteins on solids and soft materialsplayital role in biotechnical and
biomedical applications, for example for the biocompétibdf implant material or in dental
health care. Not only the properties of the sorbent surfacebe changed, but also the pro-
teins might undergo conformational changes during adsorpflo investigate such processes
in molecular detail, but still reaching appropriate timalss (microseconds), coarse-grained
molecular dynamics simulations were applied here. As a inggltem, the adsorption of
lysozyme and human serum albumin to a simple, slightly megjgtcharged, single-layer solid
surface were studied at various ion concentrations. Adisorpates of the two proteins, protein
diffusion before and after attachment to the surface, aadttentation of the proteins on the
surface were analyzed.

1 Introduction

The modeling of protein adsorption is challenging, becaasn the single protein dy-
namics takes place on timescales that are hardly accesgthia atomistic simulations.
Therefore it is necessary to use coarse-grained modelshvdascribe only partially the
internal degrees of freedom of the proteins and the suriiogrmblution. While the limi-
tations of all-atom simulations are of the order of 10 nm iacgand 100 ns in time, they
can be extended to the microsecond timescale by the appfiaafta coarse-grained (CG)
simulation scheme. In CG simulations, small groups of atanestreated as single par-
ticles, thus reducing the total number of simulated degoééeedom. Additionally, the
larger objects allow for a 10- to 20-fold increase of the tistep for integration (from 2fs
to 20—-40fs); also, the absolute dynamics in CG systemsiisased by a factor of 4 with
respect to real systemsin total, the accessible simulation time of med! ium-sizge-
tems is thereby increased to the submillisecond times&aeently, the CG approach has
e.g. successfully been applied to study the assembly adritrambrane proteins into lipid
bilayers or the self-assembly of high-density lipoprosein

2 Methods

Coarse-grained simulations on the microsecond time scale amployed to study the ag-
gregation of individual proteins on a negatively chargetiesae mimicking a mica surface,

as well as the lateral protein diffusion. Proteins and watelecules were modeled in the
recently developed MARTINI force fielef, with additional constraints on the protein to
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Figure 1. Simulation system for the aggregation study of &murserum albumine (HSA, orange) on a solid
surface (grey spheres) in explicit ionic solution (0.2 M Magteen and blue spheres). The box dimensions are
approximately 15 nm in all directions, the total number oftgms is approximately 26,000. Aggregation times
of HSA to the mica surface range between 1 ang4.0lnitially, HSA is randomly placed in the water box.

preserve the overall secondary and tertiary structuréallyi the proteins were randomly
placed into the water box (Fig. 1).

3 Results

Typical aggregation times determined from the coarseagthMD simulations range from
1us for lysozyme to about ps for human serum albumine, reflecting the different sizes
and therefore different diffusion coefficients of the invgated proteins (164 vs. 585
residues). While these time- and lengthscales (the cgray&iehuman serum albumine
corresponds to an all-atom system size of roughly 350,000 s)tare inaccessible by all-
atom simulations, coarse-grained simulations even altoabtain sufficient statistics on
the aggregation process: From in total 27 aggregation sitomis of lysozyme on the
surface (duration of each rury4) contact patterns of surface amino acids with the solid
surface could be determined (see Fig.2). These clearly giteferred orientations of
lysozyme on the surface.

4 Discussion
Protein aggregation on modeled surfaces has been shownaockssible by a coarse-

grained simulation scheme, thereby opening the lane taatamic-scale studies on the
formation of biofilms. Protein diffusion is drastically neckd on the surface, however,
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Figure 2. All-atom representation of lysozyme (A) and of HE) with residues colored according to their
net charge (red +1, blue -1). Additionally, the coarse+wgdiproteins (B and E) are shown with color-coded
interaction frequencies (C and F) to the negatively chasyefhce (red high frequency; blue no contacts).

still present. Next steps include partial freeing of theadticed elastic constraints on the
protein to allow for large-scale conformational changet/@nunfolding.
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It is experimentally known that oligomerization of amyldiéta peptides is accompanied by
a conformational transition from mainly alpha or randoml twibeta sheets. The aim of this
study is to analyze and compare the spatial orientation dfaiipn water near the peptide
surface during this conformational transition of amylbieka 42 (Ab42) and amyloid-beta 40
(Ab40) peptides. Therefore, molecular dynamics (MD) satiohs of 100 ns length with ex-
plicit representation of solvent were performed for indivél amyloid beta monomers. Analysis
was based on the radial distribution function (RDF) of hyidrawater for individual residues
and for respective secondary structure elements. In adls¢cdnitial results suggest that, in
accord with the literature, the RDFs reveal the presencevefsblvation shells around polar
residues. Variations in RDF in the first solvation shell wirend to be consistent with the
physiochemical properties of the amino acids and were imiggnt of the secondary structure
element. However, individual residues that belonged tostemndary structure segments un-
dergoing conformational transitions showed significadisteibution of water density. Further
investigations, such as dimer formation and analysis obtfentation of water molecules near
peptide surfaces are necessary to clarify the role playezllrpunding water in the assembly
of such unstructured peptides.

1 Introduction

Recent experimental evidence has implicated the toxidigotuble oligomers of amyloid
beta peptides in Alzheimer’s diseds&iven the metastable nature of these oligomers, it
is hard to obtain experimental data for the early eventsitaklace during the oligomer-
ization of amyloid beta peptides. Computational simulatioethods are, hence, needed
to provide atomistic details of the early events in amyloétisboligomerization and there
is already a broad literatute As water is known to play a key role in protein folding,
structure, dynamics, specific interactions and ligandibipdn this preliminary study, we
focus on the spatial organization of water molecules pteisesolvent surrounding the
amyloid beta peptidés Halle recently discussed the technical advancementsogegbl
in investigating the influence of protein on surrounding/eat moleculel while Helms$
and Bizzarf reviewed the computational studies aimed at studying jratater interface
and the properties of water near protein surfaces.

The primary aim of this study is to understand the effect ofranacid polarity and
peptide secondary structure on the spatial organizati@atér in its surrounding. To this
end two 100 ns MD simulations of Ab40 and Ab42 monomers, retspdy, were car-
ried out in explicit solvent. The results obtained from tinalgsis of radial distribution of
water molecules in both the simulations are compared bas#uephysio-chemical prop-
erties of individual residues and the secondary structomgposition of residues. Amyloid
beta peptides were chosen for this study as they show a wathcterized conformational
transition and hence can be ideal candidates for studymeffiect of secondary structure
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elements on surrounding wateThe RDFs, MD simulation set up and the starting struc-
ture of the peptides is briefly described in section 2. We flistuss the conformational
transitions before analyzing the RDFs obtained from bathugtions in section 3. The
results in section 3 are discussed based on the individsialues, secondary structure el-
ements and with respect to the residues that undergo coafiommal transition during the
course of the simulations. The results presented here lega feom an ongoing investi-
gation and certainly more independent MD simulations nedmbtconducted to determine
the statistical relevance of the results discussed.

2 Methods and Simulation Setup

The initial coordinates for the Alzheimer Ab42 and Ab40 peps were obtained from
the solution structures of the Ab42 peptide in an apolar ogovironment (PDB ID: liyt)
and of Ab40 in a water-micelle environment (PDB ID: 1badjpectively. All standard
MD simulations were carried out with the Gromacs pacKaging the GROMOS96 53a5
force field in the NPT ensemble at 300 K and periodic boundanditions. The linear
constraint solver (LINCS) method was used to constrain Hendths, allowing an inte-
gration step of 2 fs. Electrostatic interactions were dalea with the Particle-Mesh Ewald
algorithm. RDFs describe the ratio between the local density around a medersiter p
and the average densityof water molecules in the solution. Here, the terminal atofms
the functional groups of individual residues were considexs reference points and the
RDFs were calculated for both the water oxyggns (r)] and water hydrogerigp (r)].
The RDFs were computed for 1) all amino acids based on théaripo?2) all the amino
acids belonging to the same secondary structure elemeisttdtbe noted that in case 2,
average RDFs were calculated over certain time intervals¢ount for the conformational
transition taking place during the course of simulationl r&kidues in the two peptides,
irrespective of their solvent exposed surface area, wemsidered for estimating RDFs.
The RDFs were calculated using the-df module of Gromads The secondary structure
analysis was performed based on D&SP

3 Results and Discussion

We focus here on the effect of the peptide conformationalsiteon on the spatial orga-
nization of water surrounding the peptide. First we reploet ¢onformational transitions
occurring in the peptides during the simulations. In theeaafsAb42 peptide, the second
alpha helix comprising of residues 28-39 of the Ab42 peptideverted within 5 ns into
several beta sheets connected via beta bridges. Howegeretitral hydrophobic region
(residues 16-21) remained mostly in 5-helical structurhview local transitions to al-
pha helical structure during the 100 ns simulation. The ieim@ residues 1-14 mainly
adopted random coil structure and finally settled into a bh&et conformation at about
40 ns. Also, at about 40 ns, residues 28-33 formed a beta gfaeemained stable until
100 ns. Residues 34-42 formed a beta sheet at about 85 nethained stable till the
end of the simulation. However, it is to be noted that the Iskiet secondary structure
might be favored by the force field applied. In vast contragth42, no beta sheets formed
in the Ab40 peptide and most of the residues remained in ranztol conformation for
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most of the simulation duration. It is noteworthy to menttbat before being replaced
by random coil structure, the alpha helix comprising ofdasis 10-17 remained stable for
about 60 ns. The remaining residues 15-36 underwent a goafamal transition from
alpha helix to random coil within the first few nanosecondsiofulation. Ab40 residues
20-25 and 31-34 remained in random coil structure for moshefduration and adopted
a beta sheet structure at about 80 ns. Remarkably, the siamsgresented here capture
the beta sheet forming tendency of both the peptides. Incpéat, it is to be noted that
Ab42 is considered to be more prone to fibril formation andah®rgence of beta sheet
structure is suggested to play a key role in its oligomeigré?. However, the aim of this
study is not to highlight this beta sheet formation but ratireerstand the fluctuations in
(solvent) water surrounding the segments that undergad¥eroation transition.

The RDFSs[gpy (r)] and[gpo(r)] measuring water-hydrogen and water-oxygen den-
sity at given distance, respectively, were computed fotehminal atoms of the functional
groups present in the two peptides. As expected, the spligtalbution of water was ef-
fected by the polarity of the amino acid residue. Two solst&lls were clearly observed
for the polar and charged residues, while only one shell wasiéd around the apolar
residues. The water density at the first solvation shell wasd to be lower for the ap-
olar residues4,,.. ~ 0.7) as compared to the polar and charged ongs.¢ ~ 1.1).
Further,[gpr (r)] and[gpo(r)] values were compared to estimate the orientation of water
molecules about the residues. As expected for hydrogen tomalrs like ARG and LYS,
the first maxima fofgp g ()] (Fmaz ~ 2.6,5\) was found to be shifted to a larger distance
as compared typo ()] (rmas ~ 2A), signifying the fact that water hydrogens point away
from hydrogen bond donor molecutés

To investigate the effect of secondary structure transitim water distribution,
we identified the residues that had undergone conformdtioaasition and calculated
l[gpm (r)] and[gpo(r)] functions with reference to th@« atom of the respective residue.
In summary, residues 20-25 and 31-34 were identified to hadengone structural transi-
tion from random coil to beta sheets in Ab40. In the case of Abdsidues 1-5 (random
coil to beta sheet), 20-24 (alpha helix to random coil) and34random coil to beta sheet)
were observed to have undergone structural transitionly&iseof RDFs revealed that the
effect of structural transition on the water distributioaswnegligible when the whole seg-
ment that had undergone transition was considered. HowthemRDFs calculated for
individual residues within a given segment seemed to hawefgiant perturbations. As an
outlook for this ongoing research, we plan to further iniggge these perturbations in wa-
ter distribution due to secondary structure transitionrédeer, multiple MD simulations
with different force fields need to be run to attain stataticrelevant results.
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During functioning, proteins interact with and influenceithenvironment. The analysis of
interactions of proteins with their environment is of calémportance for an understanding of
protein function. Here, we focus on two aspects of proteieractions:

The first topic of interest is the analysis of the proteintgiro complexation behavior. In this
context, we analyze the complexation and the impact of noutsbn this process. As a model
system we chose the bacterial ribonuclease Barnase withtitsal inhibitor Barstar. Here, our
specific interest is the formation of intermediate states@lhe reaction coordinate as well as
the driving complexation force in the system. In agreemeittt experimental data, we found
that the complexation process is mainly driven by elecatasinteractions. This dramatically
reduces the conformational space of the approaching caatpe partners, resulting in the
formation of stable encounter complexes. From these irgdiates, the final complex structure
is promoted.

The second topic is the modeling of proteins interactinchweitirfaces in the framework of
the ProSurf EU project. In this context our focus is the satioh of protein adsorption on
gold surfaces in water. As a first step we evaluated a cldssitaf parameters derived by
ab-initio calculations from our cooperation partners. biaining mean force profiles for all
20 amino acids by constrained simulations and comparing tteeexperimental results, we
found reasonable agreement between experimental and tatiopal results. Additionally

these simulations allow us to retrieve information firstatttbe amino acid orientation towards
the surface during different stages of complexation andrs#the total free energy difference
during adsorption for each amino acid. In our simulationeardarrier, attributable to the final
water layer, could be observed.

1 Introduction

Interactions of proteins with their environment are funéamal for understanding the
mechanisms of biological and hybrid systems consistingalbgical and inorganic com-
pounds. For transient complexes, electrostatic steetisgah important contributidrio
the association of the proteins. This contribution depeardthe distribution of charges
across the complexation partners as well as on the propaftithe surrounding solvent.
Contrary to macroscopic systems, the solvent propertes@rhomogeneous and isotropic
but therefore depend on the surrounding protein surfaces

In biological circumstances, proteins interact not onlytvtheir counterpart but also
with inorganic surfaces like bone. Compatibility with nbiglogical surfaces and classifi-
cation of protein-surface interactions is of increasingamance for nanotechnology and
drug design. Yet, a physical understanding for these iotienas is currently lacking. The
major target of the ProSIfHEU project is the development of a toolkit allowing the char-
acterization of protein-surface interactions. In thikta& evaluated derived force field
parameters in molecular dynamics (MD) simulations.

8http://www.s3.infm.it/prosurf/
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2 Potential of Mean Force

The Potential of Mean Force (PMF) along a chosen reactiordauate allows the calcula-
tion of the free energy difference between two states. Thoaeof choice in our systems
is the evaluation of constraint fordebin simulations with constrained distances along the
reaction coordinate. In case of the Barnase-Barstar mgd&dis, we chose the distance
between the Centers of Mass (COM) as our reaction coordimaeCOM distance of the
amino acid from the topmost gold layer plane has been theehwiour gold-amino acid
systems.21 distances7 in the gold systems) have been sampled with at l¢astons
simulations per distance. The obtained Mean Force profiteggegrated to their potential
form.

3 Protein Complexation

3.1 Mutations and Setup

Our target of studies of protein complexation is the well Wnosystem consisting of a
ribonuclease Barnase and its inhibitor Barstafo analyze the impact of mutations on
the electrostatic steering, we mutated Lys27 and Arg59 ond® as well as Asp39 and
Glu76 on Barstar to Alanine, as experimentally suggesteRldfy 6 & 7, in one complex of
the crystal structufe Simulations at various constrained COM distances werewcted
while monitoring the constraint force on the complex cdnstits as well as the orientation
of the water molecules during the simulation. The forcesioled from runs consisting of
5ns simulation time at different distances were integratedessdbed in Sec. 2.

3.2 Results

In our Potentials of Mean Force significant differences leetvwildtype and mutated
complex can be observed. WhilgF' ~ 60% is in reasonable agreement with experi-
mental value the mutated complex shows negligible free energy diffeesrirom bound
to unbound state compared to the wildtype suggesting a roajdribution of electrostatic
interaction to the complexation energy difference.

A second observation in our distance constrained simulati@s the presence of stable
dipole fields at separation distances (additional dispfeese along COM-COM vector of
complexation partners) af0 A between complexation partners in analogy to findings in
simulations with single peptid&sThese fields could be observed in wildtype simulations,
but not in those with mutants.

4 Protein-Surface Interactions

4.1 Parametrization of 111 Gold Surfaces

The gold surface used in our simulations has been para@etrsith the following scheme
developed by our ProSurf cooperation partners in Modena:van-der-Waals interaction
of gold atoms is carried by virtual sites in the plane of galdace atoms. These virtual
sites are placed in the geometrical center of each triaragladd by neighboring gold
surface atoms. Electrostatic interaction is modeled wiploles at the position of all gold
atoms as described in Ref. 10.
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Figure 1. Adsorption process on parametrized gold surfdcncamino acid (Alanine) with caps. The free
simulation starts at a Center of Mass distancérof: from surface gold atom layer. A clear barrier at a distance of
5A is observable in the time-distance trace and attributattleet final water layer in the corresponding simulation
snapshots. Only water withimA of gold atoms and amino acid is shown in the snapshots.

4.2 Free Energy Calculation

In analogy to PMF calculation in Protein Complexes, we daled Mean Force Profiles
for amino acids with capped backbone. Our first results aasgirement with experimen-
tally obtained values from Surface Plasmon Resonance (BRBR3urements and allow us
further tuning of gold parametrization in 4.1.

4.3 Dewetting and Adsorption

To adsorb on the gold surface, the final separating water,lagea barrier, needs to be
overcome. Figure 1 shows a typical dewetting process of anaatid. The barrier at a
distance ob A in the time vs. distance trace is clearly visible in framed@yl (3) as the
final water layer. The adsorption process in free simulatstarting fromlnm distance
above the gold surface is very fast for the uncharged amiials & 500ps) while the time
until adsorption is significantly longer for charged andgsa@mino acids. This suggests
different barriers during adsorption processes. Whenradsoon the gold surface, we
could not observe desorption events in our simulation frow @mino acid duringns
simulation time.
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5 Concluding Remarks

During complexation, water as the surrounding solvent cadiate a prealignment of the
complexation partners, dramatically reducing their comfational space. This is even
more surprising since the binding site of Barnase-Barstawot more hydrophobic than
the rest of the protein surface suggesting an increase dfetatic steering instead of the
hydrophobic effect as the major contribution to prealignmé\dditionaly, investigations
on the adsorption process of amino acids on gold surfacesifigéhe final waterlayer as
primary adsorption barrier.
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The enhancement of plant growth and productivity by the ise@micals is a common practice
in agriculture but rather little is known about the effeatdk BioRegulators have on plants on
a molecular level. The presented work is part of an ERA-NEdJjgmt with the aim to identify
genes, proteins and metabolites, differentially expisseler conditions of stress while treated
with certain compounds. Arabidopsis thaliana plants aogvgron soil and in hydroponic cul-
tures and are subjected to salt, cold and drought stress.pfbiggess of stress is monitored
phenotypically by leaf shape and chlorophyll fluoresceridee proteome profile of the plants
is analysed via 2D electrophoresis and mass spectrometryhé&identification of differentially
regulated proteins in response to the BioRegulator tregtomeder stress conditions, the DIGE
(difference-in-gel-electrophoresis) system will be us&te biomarkers identified universally
for the different stress conditions will be used to estébticell based assay for the screening
of potential new BioRegulator compounds.

1 Plant Growth

Arabidopsis plants are grown on soil for the study of coldsdrand in hydroponic cultures
for the study of salt and drought stress. In both setups plarg grown for three weeks
under short day conditions (9 hrs light, 15 hrs dark) and oeelaunder long day condi-
tions (16 hrs light, 8 hrs dark) before they are subjectetiéaéspective stress conditions.
For cold stress conditions the plants are shifted to a dglgftémperature regime of’L.
Control plants stay at the day/night temperature regimeld€218 C. Salt stress is pro-
duced by supplementing the hydroponic solutions with 125 &€l and drought stress
by supplementing the solution witt) % PEG, thereby lowering the water potential.

2 Stress Monitoring

Stress monitors had to be found in order to detect significhahges of plant behaviour
under stress conditions while treated with BioRegulatanpounds. For cold stress the
decreasing quantum yield of photosynthesis (probed viarophyll fluorescence of PSII)
can be used as a reliable indicator for stress. Healthy pkadtibit a ratio of).8 whereas
a decrease below 7 indicates disturbance and damage of the photosynthetarafys by
the stress. The onset of salt stress is monitored in charideafshape as in comparison
to control plants, the leaves of stressed plants grow rathesdth than in length. The
ratio between leaf length and width was measured at ceia@oints during a salt stress
period of144 hrs. At the end the ratios wee22 + 0.14 and2.78 + 0.24 for stressed
and control plants respectively. Drought stress leads wdaaed overall growth and a
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darker green colouring compared to normal conditions legetparameters are so far only
documented photographically. Using the accumulation di@eyanin, a purple coloured
secondary metabolite as a stress monitor is currentlydeste

3 Compound Treatment

BioRegulator compounds are sprayed onto the plants 24 ffwschiey are shifted to the
respective stress conditions. Among others, compounds fhe groups of azoles and
neonicotinoids are used in the study.

4 Proteomic Analysis

2D electrophoresis is used for the analysis of the wholepeateome. Proteins extracted
from Arabidopsis leaves are separated according to thadtdstric point (pl) in the first
dimension by isoelectric focusing (IEF) and according teirttmolecular weight in the
second dimension by SDS polyacrylamid gel electropho(BS&E). For the identification
of the biomarkers 2D electrophoresis using fluorescenepraags (DIGE, difference in
gel electrophoresis) is used for the identification of trentmrkers. With this method, two
samples from different conditions to be compared are lafedlith fluorescent dyes that
are spectroscopically distinguishable (CyDyesTM GE Healte) and run on the same 2D
gel. Aninternal standard consisting of a pool of all samplesent in the experimentis run
on every gel in order to facilitate inter-gel matching aratistic evaluation (three samples
per gel, CyDyes 2, 3 and 5). Spot intensities from the difiermages are obtained and
protein difference ratios are determined using the DeCgdftware (GE Healthcare).

First the difference in protein composition in response dtd stress conditions un-
treated with BioRegulators was investigated by DIGE. Adabisis plants were subjected
to cold stress for a period af44 hrs and leaf samples (in triplicates) were taken every
24 hrs. In total8 gels were run. Afted44 hrs of cold stress a total dfi2 protein spots
were found to be differently regulated. Of the§¢ spots increased ar@ spots decreased
in abundance. In total- 1300 spots were detected on the 2D map of the whole leaf pro-
teome. Protein identification will be done by LC-MS.

In the next steps plants showing a significant effect wheatéik with BioRegulator
compounds under stress conditions (monitored by the paessiatroduced in part 2) will
be investigated by DIGE in order to indentify the biomarkeesessary for the establish-
ment of the screening assay.
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We present a novel Hamiltonian replica exchange molecyiaamlics (H-REMD) scheme that
uses soft-core interactions between those parts of theraythat contribute most to high energy
barriers. The advantage of this approach over other REMBrsek is the possibility to use a
relatively small number of replicas with locally largerféifences between the individual Hamil-
tonians. Because soft-core potentials are almost the samegalar ones at longer distances,
most of the interactions between atoms of perturbed paltemly be slightly changed. Rather,
the strong repulsion between atoms that are close in spdueh 8 in most cases resulting in
high energy barriers, is weakened within higher replicasusfproposed scheme.

The presented approach leads to a significant enhancemennfafrmational sampling both
for the smaller molecules GTP and 8-Br-GTP in explicit wated for residue Phe483 within
the catalytic site of CYP2D6 in complex with its substrate M&.

1 Introduction

Replica exchange molecular dynamics (REMD) has shown aetndous impact in the
field of biomolecular simulation. While temperature REMBDREMD) is mostly used
to enhance conformational sampling of larger systems iri@isolvent, Hamiltonian
REMD (H-REMD) is also suitable for simulations in explictlgent. However, it is not
always trivial to find a perturbation of the Hamiltonian whieads to enhanced conforma-
tioinal sampling.

Here we present a H-REMD scheme using soft-core interagtishich is particularly
suitable for the enhanced sampling of selected flexiblespditystems in which the energy
barrier between different conformations is high due torggroon-bonded repulsions. The
barriers are lowered by weakening the interactions usiffigcene interactions given by

eq. (1)?

C12 1
Ves = <a012/06)\2 +r6 06) aC12/C6A2 + rF @
All simulations were performed using GROMOS0&nd the GROMOS 53A6 force
field. The REMD efficiency was significantly increased by wailog multiple replicas to

run at the highest softness level. Values of other softressd were optimized by mim-
icked REMD to maximize the number of global conformatiomahsitions

2 REMD of GTP and 8-Br-GTP

We have tested the new protocol on the GTP and 8-Br-GTP mieleauexplicit solvent,
which are known to have high energy barriers between theadtsyn conformation of the
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Figure 1. Potential of mean force along the glycosidic bon@DP, as function of the softness parameter

base with respect to the sugar moiety. During two 25 ns MD kitians of both systems
the transition from the more stable to the less stable (lllesperimentally observed)
conformation is not seen at all. Also T-REMD over 50 repliéas1 ns did not show

any transition at room temperature. On the other hand, niiane 20 of such transitions
are observed in our new H-REMD scheme using 6 replicas (aff&eint Hamiltonians)

during 6.8 ns per replica for GTP and 12 replicas (at 6 difiekéamiltonians) during 7.7

ns per replica for 8-Br-GTP. The soft-core interactionsevapplied for the non-bonded
base-sugar interactions in GTP and 8-Br-GTP.

The calculated population of GTP in the anti conformatiors Wa.6%-+ 0.5% and
6.0%+ 1.8 % for 8-Br-GTP- These values are in very good agreement with results com-
ing from thermodynamic integration using a hidden dihearagle restraint around the
glycosidic bond. The observed inverse character for GTP8aBd-GTP is also in agree-
ment with NMR estimates for anti/syn populations. Dihedragle distributions around
the glycosidic bond were also used to generate the potefitiatan force (Fig. 1). From
this figure it can be seen that the energy barrier as well af¢lsecnergy difference be-
tween the anti and syn conformation is decreasing with amirg softness. This leads to
an increased number of conformational transitions at theests of softness.

3 REMD of Phe483 within CYP2D6

Cytochromes P450 (CYPs) are heme-containing enzymesahdiecfound in virtually all

organisms. CYP2D6 is one of the most crucial isoforms inedlin the drug metabolism
of humans. Mutagenesis experiments confirm importance efi®in substrate bind-
ing. Its conformation is however quite unclear as it is posid in a rather flexible loop
region inside the catalytic site of CYP2D6. Several comjporial studies indicate that
multiple Phe483 sidechain conformations are occuring.sléfiCYP2D6 MD simulations
in complex with several ligands revealed only very few tigoss for Phe483 between
conformations corresponding t¢" = 70° andy! = 170°. Visual inspection indicates
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that the corresponding energy barrier is mostly due to tpalséon between the Phe483
and Leu224 side-chains together with the dihedral angha @oundy'. Therefore en-
hanced conformational sampling by H-REMD using soft-cateractions was performed
for Phe483 within CYP2D6 in complex with the MAMC substratenthich the force con-
stant for they! dihedral angle term was additionally decreased towardsweih increas-
ing softness. When softness was applied only for the intierasbetween the sidechains
of Phe483 and Leu224 no enhanced sampling was observecdkrRathsidechains moved
closer in space and a high energy barrier remained. On tlee bémd, when softness was
applied for all interactions involving the Phe483 sidechaind the rest of the protein or
MAMC, the barrier was significantly lowered. We observed &ugll conformational tran-
sitions within 1 ns of H-REMD using 8 replicas. These pretiary (not fully converged)
simulations reveal that the conformation of Phe483 with= 70°, as it is observed in
the (apo) crystal structure is present for only 15% of thestiwhen MAMC is bound in
the active site. Interestingly,' had value~ 170° in the homology model of CYP2D6 in
complex with the codein, which was constructed in our grogfote crystal structure was
released.

4 Concluding Remarks

We have developed a H-REMD scheme using soft-core intersttand implemented it
into the GROMOSO05 package. Its high conformational sangpdifficiency is shown for
GTP and 8-Br-GTP as well as for Phe483 within the CYP2D6/MA@Nplex. The

high efficiency is obtained thanks to the fact that only thpads of the Hamiltonian are
perturbed which contribute most to high energy barriers.othar efficiency gain was
obtained by using a degenerate highest softness level angptimal H-REMD settings
obtained from optimization by REMD mimickint.
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During recent years Toll-like receptors (TLRs) have speaded a tremendous research interest
and the amount of sequenced relevant proteins grows expalherA critical step towards the
successful TLR structure modeling is to generate the leddah repeats (LRR) motif aided
sequence alignment between the target sequence and thiatesngHowever, because of the
irregularity of LRR motifs in TLRs, most TLRs have no LRR ateions in current databases,
and in those TLRs with LRR patrtitions, the indicated repaanber and the boundaries of
LRRs are quite different among databases. In order to peazidseful platform for structure
prediction and analysis of these sequences, we developfdLT@an XML based database
specialized for TLR structural motifs. Its original TLR semces were extracted from NCBI’'s
protein database. The LRR motifs as well as transmembragel B motifs for all known
TLR sequences are identified and annotated manually anchearbe used for the prediction
of protein structures via alignment and threading. Theltiegudatabase has been used for the
structure prediction of TLR7, 8 and 9.

1 Introduction

Toll-like receptors (TLRs) play a crucial role in innate iranity. To date, 13 TLRs have
been identified in mammalian, and equivalent forms of manthee have been found
in other vertebrate species. Under a structural view, thBsTtonsists of 3 parts: the
TIR domain inside the membrane, the transmembrane regidthenectodomain (ECD)
formed by 18 to 25 leucine-rich repeats (LRRS). It is justBE@D that is directly involved
in recognition of a variety of pathogens (ligands). Althbdgr most of these TLRs ligand
recognition specificity, downstream adapter molecules sigdaling pathway have now
been established, we still do not know much about their siratinteraction with ligands.
In 2005 the crystal structure of TLR3 ectodomain (ECD) waheed and recently the
crystal structures of TLR1/2 and 4 in respective complexils agonist and antagonist
ligands were shown. All these explained how the LRR basetfopia is adapted to
the recognition of ligands. However, with high throughpahgme sequencing projects
the amount of sequenced TLR proteins continues to grow expa@lly. It is clear that
the discrepancy between the rate at which novel proteinesemas are discovered and
the rate at which detailed structural information will betaibed from X-ray diffraction
or nuclear magnetic resonance spectroscopy (NMR) will inoet for the foreseeable
future. For this reason, there is a pressing need for theare@bethods to predict protein
structures from their sequence. The understanding of streictural interactions can help
us design vaccines, understand autoimmune diseases, famelttie correlates of immune
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protection. The TLR7, 8 and 9 constitute the TLR7 family whis one of the six major

vertebrate TLR families. They are all located in the endas@nd recognize nucleic
acids. Our objective is to construct models for TLR7, 8 and_®Dbbased on the structure
known TLRs and other LRR containing proteins.

2 Database Construction

TollML entries were originally extracted from NCBI protsimlatabase and PBRising
the search keys: toll* and tlr*, where the star (*) standsday suffix. The data were
then filtered semi-automatically to exclude TLR related ecales such as adaptors, pro-
tein kinases and transcription factors. The metabolicyayts information was then ex-
tracted from the KEGG-database for each TLR ehtrjside from the extracted infor-
mation, TolIML contains additional annotations, which s manually accomplished.
These annotations include LRR partitions, ligand infoioraand structural information
achieved through other projects or extracted from pubtisiréicles. The indicated num-
ber of LRRs and their boundaries in individual TLRs are qdifeerent among databases
or researchers. This difference reflects the irregulafityRR motifs in TLRs. We stan-
dardized the LRR definition and partitioned each TLR ECD ibRRs manually. The
generated XML-datafile was then stored in an XML-datathase

3 Contents of Database Entries

The current version (1.2) contains 2232 enfieE529 entries are of mammalian and the
rest are of non-mammalian. All entries are divided into 2dugs, from TLR1 to TLR23
and others. A special tag named TolIML label records whiaugran entry belongs to as
a quick search index. The entry distribution over differ€hR families is illustrated in
Tab. 1. Each entry in TolIML provides information of one TLRofein.

TLR 1 2 3 4 5 6 7 8 9 10-14 other total

Mammalia 55 92 77 921 47 46 71 55 83 81 2 1529
Non-mam 267 132 22 16 22 1 13 8 12 54 159 703
Total 322 224 99 937 69 47 84 63 95 135 161 2232

Table 1. The entry distribution of TLR families for mammaliaon-mammalian groups.

4 Construction of a Conformational LRR Database

Leucine-rich repeats are an array of 20 to 30 amino acid lontem segments. Every
segment is rich in the hydrophobic amino acid leucine. Thay pn important role in
protein-protein interactions, such as signal transduagtell adhesion, DNA repair, recom-
bination, transcription, RNA processing, disease resggaice nucleation, apoptosis and
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innate immune response. The first crystal structure of LRRaining protein, a ribonu-
clease inhibitor, was determined in 1993. It is a horsesblo@ped structure containing 15
LRRs with a parallel beta-sheet lining the inner circumfeeand alpha helices flanking
the outer circumference.

LRRs are present in over 6000 proteins from viruses to ewtasy For more than 80
of them the structure is known. In order to create a convémierkbench to carry out the
homology modeling and to manage the structure known LRR#fleand efficiently, we
decided to construct a conformational LRR database.

All leucine-rich repeats can be divided into a highly conseérsegment (HCS) and a
variable segment (VS). The HCS consists of an 11 or 12 restteéech with consensus
sequence LxxLXLxxN(Cx)xL, in which L stands for Leu, lle, Mar Phe, N stands for
Asn, Thr, Ser or Cys and x is any amino acid. A short beta-dbesgins always at the third
position. 4 L residues at position 1, 4, 6, and 11 particifratée hydrophobic core. The
side chains of asparagines (N) at position 9 form hydrogebbetween neighbor LRRs
in the loop structure. The VS of LRRs is quite different indémand consensus sequence.
It can contain a variety of secondary structures.

5 Protein Comparative Modeling

At present there are over 80 LRR containing proteins whoggalrstructures are available
in RCSB Protein Data Bank (PDB), including the ECDs of TLRB2nd 4. They provide
useful resources for homology modeling of TLR7, 8 and 9.

Comparative modeling, also called homology search, etglibie fact that evolu-
tionarily related proteins with similar sequences, hawveilar structures. The process of
building a comparative model is conceptually straightfardv First, Blast searches for
the sequence to be modeled (the target) against a datablsevari protein structures is
performed to find a most similar sequence (the parent). Tdssity is usually greater
than 35%. Second, an alignment is generated between thet tang the parent. This
sequence alignment is used to construct an initial modehésiones referred to as a
framework or template) by copying over some main chain aghel shain coordinates from
the parent structure based on the equivalent residue iretheesce alignment. At last, the
model is improved by energy minimization and molecular dyitzs.
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A novel kinetic model for the first enzymatic step committedtte starch degradation pathway
in plant leaves is presented and analyzed. It is based oentuknowledge and hypotheses
about the action and role of glucan, water dikinase (GWD) ssesetial enzyme for normal
starch breakdown. The model is formulated in terms of orgirtifferential equations and
includes (a) the autoactivation of GWD, (b) the adsorptiesbrption to the starch surface, and
(c) the interfacial catalysis of the phase transition fratystalline to amorphous sites. It is
this transition only, which renders the insoluble starciingite susceptible to hydrolytic attack
by exo- and isoamylases, ultimately releasing solubleagiadnto the stroma. We identify
the efficiency of phase transition as being important forfthal state of the system and the
adsorption as a potentially feasible regulatory site totrobrihe rate of phase transition and
thus starch breakdown.

1 Introduction

Transitory starch in leaves is an important carbon souncg&ri& organs of plants during the
night phase. It is composed of amylose and amylopectin wittiia of approximately 1/5
to 1/9 depending on botanical origin. This composition esdtarch rather hydrophobic
and insoluble. The granule is degraded during the night byl@giic enzymes hydroliz-
ing a-1,4-bonds (mainly bys- amylases) and-1,6-bonds (isoamylases) to release glucans
into the strom&. Prior to hydrolytic attack, however, the bonds have to be erattessi-
ble. The transition of inaccessible crystalline sites mititerface to accessible amorphous
sites is catalyzed by at least one dikinase, the glucan rwdtimase GWD. This enzyme
is supposed to unwind glucan double helices at crystalites and phosphorylate gluco-
syl residues to increase the hydrophilicity of starch, ébgrpreventing spontaneous helix
formation after dissociation. This is consistent with acr@ase of the phosphate content
in starch granules at the beginning of the night and a higttarity of amylases on starch
in vitro if GWD is provided??

2 Motivation

With the model we were able to simulate possible behaviadifferent conditions and test
for the dependence of the phase transition rate on presyrimapbrtant parameters like

the adsorption equilibrium constant. From hereon, we careigde testable quantitative
hypotheses to aid and interpret in vitro assays of GWD ortistgranules or crystallised
maltodextrins, as well as to improve and especially extamdnoodel to include glucan

release.
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3 Model Formulation

A simple model of the hypothetical initial enzymatic steiarch breakdown is presented.
It comprises four reactions describing the catalytic cpél&EWD. The corresponding sys-
tem of ordinary differential equations is derived.

3.1 Reaction Mechanism

We assume the following simplified reaction scheme:

E+ATP =Cy — AMP + Cy (autophosphorylation)
Co+Sc=0 (adsorption/desorption)
©—P+aSa+(l—a)Sc+E (phase transition)

At first, ATP is bound reversibly by GWDK) to build a complexC;. In the second
reaction the3-phosphate of ATP is transferred to a His-residue in thegimotielding the
complexCs and AMP. After this autoactivation, GWD is adsorbed in therfof Cs at
crystalline sitesSc on the surface. The variabte denotes crystalline sites occupied by
the enzyme, which can either dissociate again or catalyzépirtial) phase transition to
amorphous starchS(4) in the fourth reaction . This last step lumps together thagfer
of one phosphate group to a glucosyl residue, releasingtttee phosphat@; to the bulk
phase and desorption of the enzyme. The paramaeter(0, 1) is introduced in order to
cope with the fact that crystalline sites are possibly raigformed into amorphous sites
stoichiometrically. Depending on the length of the glucéreing the double helices
more than one phosphate may be necessary to get an amorpteousf or example
a = 0.5, on average two ATP are consumed for a complete phase toanaita given site.
We assume that the surface of the starch granule is alwdyes eitystalline, amorphous
or occupied by enzymes. It has to be emphasized that thedepesnding on moieties as-
sociated with the surface are assumed to be proportionla¢todrresponding surface area
normalized to the maximally available surface afeaThis is a usual assumption, which
is for example also used in the kinetic derivation of the Lrang adsorption isotherrh.

3.2 Differential Equations

The time evolution of the particle numbers in mole per timiéfos

-1 0 0 0
-1 0 0 1
1 -1 0 0
d 0 1 —1 0
—7 = 0 1 0 0 v
dt 00 -1(1-a)
0 0 1 -1
0 0 O «
0 0 O 1
Wherenl = [ATP] -Vi,ng = [E] -V,ng = [Cl] -Vi,ng = [CQ] -Vi,ns = [A]\/[P] -V,
neg = Sc - Amaz, N7 = O - Apaz, ns = Sa - Amas, @andng = [P;] - V. The squared
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brackets denote concentrations wher®ass the volume of the bulk phase4,, .. is a
parameter characteristic for the adsorbed particle, demtie maximal GWD adsorption
in mol /m? if the substrate is in excess.

The rate vectoi = (vy,...,v4)" was derived assuming mass action kinetics. Sim-
plification of the system description is possible by exjphgjttwo conservation relations,
S Apaz = ng + n7 + ng, andN = n; + n3 + ns. Eliminating two variables, dividing
all equations by and nondimensionalizing time yield the system

él = /~€_1(C — C1 — 04) — ];16102

C3 = 152(0(1) —c1— 1) = Wiae(Kaq - c3- $e — (1 — 8¢ — $4))
C4 = 152(0(1) — 1 — )

s = Whnas - k4(1 — 8¢ — Sq)

Se=(1—=a) (1 —58:.—54) — Kaq-c3- 8¢

The variables:; to c; are the concentrations of ATP, GWD, the compléx AMP, and

P;, respectively. The dimensionless surface ratiossare S¢/S ands, = S4/S from
which § = ©/S5 may be calculated by = 1 — s. — s,. In the simulations, no AMP

is provided initially, therefore! denotes the initial ATP concentration. The parameter
Winaw = Amaz - v, With m being the mass of starch provided is related to both the
space occupied by a molecule of GWD on the starch surfacehaghfipe of the granule.
The parameteK,; = k3/k_3 in M~ is the equilibrium adsorption constant of GWD to
crystalline sites.

4 Results

4.1 Progress Curves

Figure 1 shows a typical time evolution of the system if edoAgP is provided initially.
The crystalline zone is completely transformed into amoyszone. Ifthe ATP level is too
low or the phase transition is inefficient (law) ATP becomes depleted before transition of
the surface is complete (data not shown). This would seyelistupt further breakdown
of the starch granule in vivo.

4.2 Control Over the Maximum Rate of Phase Transition

To infer which of the initial reaction steps and associatadameters presumably have
a strong impact on the breakdown rate of starch we calcutadéfluence of some of
these parameters on the maximum rate of substrate provimidrydrolysis, namely the
maximum phase transition rateaxv,. The results depicted in Figure 2 indicate that
regulating the adsorption/desorption constafy; may be a good means to effectively
altervy. Also the autophosphorylation step of GWD can be a good atigul site, at least

if it is sufficiently slow (data not shown).
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Figure 1. Progress curves of a system with ATP Figure 2. Maximal phase transition rate depending
excess. The phase transition is complete and this on adsorption equilibrium constant. The positive

steady state is stable for many parameter values slope reflects a strong control over the transition
(data not shown). rate.
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It has been shown that the native structure of a small pra@mnbe efficiently found as the
global minimum of a certain all-atom forcefield. In the presstudy, we use this approach to
simulate folding of Engrailed homeodomain (PDB code 1ENbt)taining the helix-turn-helix
motif. The search procedure is based on the Monte Carlo atediannealing combined with
the evolutionary algorithm. We propose a new way of incregaghe efficiency of this method.

1 Introduction

The free-energy approach has delivered promising resarlfgrbtein folding and structure
prediction in recent years. Following Anfinsen’s hypotlsgshe native state is postulated
to be the global minimum of a all-atom free-energy functidhis minimum can be found
by optimization methodsinvolving the Monte Carlo simulated annealing. This apptoa
was successfully used to fotd, 3- and mixed proteins of small lengiti3.

This procedure requires an accurate, transferable enengyién, such as the Protein
Force Field (PFF02) developed in our gréup

E = Eyj + Ers + Esasa + Eus + ER.

It contains the following terms: (155, the standard Lennard-Jones potential Az}, the
Coulomb energy of electrotatic interaction with efficierdldctric constants, (sasa, a
term proportional to the solvent accessible surface atal (i, a term for the hydrogen
bonding, (5)Fr, a term stabilizing thg-regions in the Ramachandran plots. All the atoms
are explicitly represented (only the apolar grdtig,, is considered as a single atom). The
bond angles and the bond lengths are fixed. The degrees dbfreeonsidered are the
backbone), ¢) and the sidechain() dihedral angles. The solvent is taken into account
implicitly.

The Monte Carlo procedure involves two kinds of moves: (liased, consisting of
a ramdom change of the dihedral angles, and (2) biased, vaeicthe dihedral angles
(within a single residue) to predefined values from a celthrary.

The most promising optimization method is the evolutioragorithn?, where a fixed
size population of conformations evolves simultaneouSlye cycle of the algorithm con-
sists of the following steps. An individual conformationtégken randomly from the pop-
ulation and is subjected to the Monte Carlo simulated ammgatarting from a random
temperature. The obtained structure is then added to thelgttgm. If the similar (in
terms of RMSD) conformations are already present, than tieane among them with
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Figure 1. The phase diagram for the Engrailed homeodomdie.optimal annealing path is shown by the arrow.

the lowest energy is kept in the population and the othersearmved. Otherwise, the
highest energy structure within the entire population maeed (provided the population
size has exceeded the certain limit). After many such cydtheslowest energy structure
approaches the global minimum.

In the present work, we improve this procedure by optimizimg conditions of the
simulated annealing. The efficiency of our approach is destnated by the example of
the Engrailed homeodomain (PDB code 1ENH), a small thréi@-peotein containing the
helix-turn-helix motive that is involved in the DNA bindifg

2 Methods

It has been observed that during the simulated annealirigeademperature lowers down,
the collapse of the chain occurs first, and only then the siangrstructure forms. But in

the collapsed conformation the Monte Carlo moves are asdlgiéss efficient. To address
this problem, we used the modified energy

E = XEgasa + Egs + ...,

where) is an arbitrary parameter in the ran@e< A < 1. Consider the (artificial) phase
diagram in the coordinatesand the temperaturg as shown in Fig. 1. (By the “phase”
we imply the most probable state of the system.) The “tripi@iht is characterized by the
most extensive fluctuations of the structure in terms ofites and energy. The main idea
of this work is to use it as the starting point for the anneagfirocess. (The unrealistic high
temperature is due to the stabilizing effect of the biasedang First, the system is kept
at the fixed\ and7 for a period of approximately one relaxation timend then, for the
same time period, it is moved along the arrow in Fig. 1.

The triangle and circle points in Fig. 1 were obtained withimowledge of the native
structure as illustrated in Fig. 2.
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Figure 3. Comparison between the simulated (dark gray) apergnental (light gray) structures. The backbone
RMSD is 2.8A.

3 Results and Conclusions

The comparison between the simulated and experimentaitstas is shown in Fig. 3.
When the “triple” point of the phase diagram is known, theveegtructure of the Engrailed
homeodomain can be found in 2 months CPU time. Using the @@ofrannealing path
increases the efficiency of the evolutionary algorithm byeder of magnitude.
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Local, post-transcriptional modifications can have promed effects on the global energy
landscape of RNA molecules. We have studied the equilibbetween discrete conformational
states in human mitochondrial lysine transfer RNA (mt tRINA) by using single-molecule
Forster (or fluorescence) resonance energy transfer (Bfif§pectroscopy. From histograms
of the FRET efficiency, an unfolded structurg)( a non-functional, extended hairpin struc-
ture €) and the functional cloverleaf fornCj of human mt tRNA¥$ can be distinguished.
The equilibria between the, E, andC states were characterized as a function ofMgon-
centration for two RNA constructs that only differ by a siaghethyl group modification of a
nucleotide base. A thermodynamic model was developed whibased on the separation of
conformational changes and binding of divalent cationsseeon this model, the impact of a
single methyl group modification on the energy landscap&niLvs was assessed.

1 Introduction

Proteins and ribonucleic acids (RNAs) are linear polyméet tan fold into compact
three-dimensional structures, in which they are able téoper specific roles in biolog-
ical processes within living cells or organisms. Finding ttorrectly folded structure is
an extraordinarily complex process that has yet to be sabyeth-silico modeling ap-
proaches, although significant progress has been madehavgears. The key problem
for computation is the vast conformational space of eveneratély sized biopolymets
The conformational energy landscape has provided a camaleiphmework by which to
describe both protein folding and functfonProtein folding is visualized by a transition
of the molecular ensemble on the energy landscape via maallgddrajectories and lo-
cal minima en route to the folded-state ensemble. Foldimgateins and RNA is overall
governed by the same principles; yet there are differendgsi®@ from the nature of the
interactions introduced by the monomeric units. A distidifference, however, is the hi-
erarchical nature of RNA folding that originates from thempounced base pairing leading
to the formation of relatively stable secondary structtires

Frequently, post-transcriptional chemical modificatiafsribonucleotides are ob-
served which only slightly change the energy landscapeléxtieely stabilize the native
conformatioR. Here we present an exception, human mitochondrial (mthdysans-
fer RNA (tRNALY#), in which a single methylation on adenosine 9'48) in its struc-
tural core was seen to cause a marked shift of the thermodygreamilibrium toward
the functional form of the RNA molecuié. We have studied this biologically important
modification by using single-molecule Forster (or fluosssme) resonance energy transfer
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(smFRET), a technique that allows conformational chandédsamolecules to be visu-
alized under equilibrium conditions in real tirhelt relies on the ability of a fluorescent
dye (donor) to transfer its energy non-radiatively to arofluorescent dye (acceptor) that
typically absorbs at longer wavelengths. By attaching su€tfRET pair of dyes specifi-
cally to the structure of interest, the strong distance ddpece R °) of the effect enables
distance changes down toAlto be measured. Such quantitative experimental data are ex
pected to be most useful in the development of both theonésamputational modelling
approaches.

2 FRET Measurements

Two suggested secondary structures of tRN#A the non-functional extended hairpil)(
and the functional cloverleaf-based L-shaf@g ¢onformations, are presented in Fig. 1a.
To observe the conformational changes betwEeand C, induced by the methylation
of adenosine 9 (A9), two FRET constructs with the unmodifiédt] and the modified
(Km'A) sequences were prepafedhe presence of multiple conformations in the FRET-
labeled RNA constructs was investigated by smFRET experisran freely diffusing and
surface-immobilized molecules using a confocal microscolm these experiments, the
efficiency of FRET,E = W{# is calculated ratiometrically from the donaf) and
(14) acceptor fluorescence photon counts, and the paramet=rounts for differences in
the donor and acceptor quantum yields and the detectioneeffies. RNA is a polyan-
ion, carrying one unit of charge on each nucleotide, and thald@nb repulsion must be
screened by counterions, which may bind in specific locatmmust form a diffuse cloud,
to stabilize the functionally competent states. Variatibthe counterion concentration is
a useful experimental control parameter to shift equailirétween different structures in
the energy landscape. We have measured histograms of the éffEtency at 16 different
Mg?* concentrations, which can be described by superpositibisee FRET efficiency
distributions peaking at low, intermediate and high FREILe&s. Based on the proposed
structural model for tRNAY* and the crystal structures of tRNIA®, we have assigned
these subpopulations to thé (for "unfolded”), E (for "extended hairpin”), andC (for
"cloverleaf-based L-shape”) states. Switching eventsvbeh theE and C states, with

a) 5 (b)
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Figure 1. Conformational changes of human mt tRNIA affected by methylation of adenosine 9 (square). (a)
Secondary structures of the proposed extended haigpiar(d the cloverleaf-based L-shag8 conformations.

(b) Mg®>t dependence of the fractional populations in the unfoldg)] E, and C states of Kwt and KrhA
tRNALvs constructs. Results from fitting the data with the thermaaiyic model are given as lines.
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rare brief sojourns ttJ states, were observed in FRET trajectories of individudbaues
immobilized on a glass surface. At 10-mM Rigconcentration, the kinetics of tRNA®
was described with a simple model involving two conformasicc andC, interconverting
on the 100-ms timescdleTo quantify the change of the, E, andC conformations with
Mg?* concentration, we performed a global fit of the 16 FRET histots for each of the
constructs; in Fig. 1b, the fractional populations of theéhstates of Kwt and K are
plotted. For both constructs, a pronounced drop oflhs&tate population is observed at
~0.5 mM M¢?t. Itis accompanied by an increase of tistate population with increas-
ing Mg?* concentration. ThE state is much more populated at low concentrations in Kwt
than in Km'A. At high Mg?t concentration{100 mM), theE andC state populations
decrease and increase with Mg respectively.

3 Thermodynamic Model

lon-induced stabilization of RNA can be modeled by decormapthe reaction into RNA
folding and ion binding, as proposed by Misra and Dr8p&ased on this approach, we
have developed the six-state thermodynamic model degittéd. 2a. In this model, there
are free energy differences between the Mg-frge &), and G conformations, whereas
the strength of Mg" ion binding to the U,,, Ear,, and Gy, conformations governs the
equilibrium between the Mg-free and Mg-bound populatiohthe corresponding states.
Mathematical details of the thermodynamic model can beddara recent publicatidh
The lines in Fig. 1b represent the fit results of the fractigmgoulations governed by the
equilibrium coefficients. The free energies of the Mg-frad &g-bound (at 1 M) states
are depicted in Fig. 2b. The compaction of the conformatgwiag from U, to E; and
from E, to C, increases the free energies of the Kwt construct. For théAoonstruct,
the methylated A9 introduces a positive charge, which imibes base pairifgand stabi-
lizes the | state significantly{10 kJ/mol). However, the stabilizing effect is drastically
reduced for the f, of Km'A, possibly because of the competition betweer?Myind-
ing to theE state and favorable hydrogen bonding ofAf in the base pair AA9-U64.

AG / kd/mol

Figure 2. M@t -induced tRNA¥s folding reaction. (a) Thermodynamic scheme describingetipglibria be-
tween the Mg-free and Mg-bound forms of the E, andC states. (b) Free energy diagram of the populations
Uo, Eo, and G of Mg-free, and Uy 4, Earg, and Gyg (at 1-M Mg?+) of Mg-bound Kwt and KmA tRNALYs,
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In the cloverleaf conformation, A9 is likely exposed to tldvent and, thus, the stabiliz-
ing effect is smaller{3 kJ/mol). Nevertheless, binding of Mg ions remains practically
unaffected, making this functional conformation thermoaiyically preferable at physio-
logically relevant ion concentration.

4 Concluding Remarks

Here we have shown that FRET experiments performed at thkesimlecule level provide
details about structural and dynamic aspects of RNA moéscutquilibria and rate coeffi-
cients of conformational transitions can be studied byctieiely changing environmental
parameters, as was shown in here by variation of the coontedncentration. Quantita-
tive information extracted from such measurement will beshinteresting for comparison
with computational approaches aimed at simulating thesesitions in the complex RNA
energy landscape.
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Although conformational changes in receptor upon ligamtlinig are a very common phe-
nomenon, incorporating protein flexibility in a docking pealure encounters significant com-
putational problems. A possible solution is inclusion sittain flexibility for only limited
number of residues in the binding pocket, which can impraxtealsly docking accuracy without
considerable increase of computational costs. Howeweagstigation of this approach is often
limited to specifically chosen receptors and mostly focusedhe impact of receptor flexibil-
ity on docking accuracy, whereas ligand scoring, the realkwess of the present-day docking
methodology, is treated only peripherically. In the préstndy we investigate enrichment rates
of rigid-, soft-, and flexible- (“induced-fit") -receptor rdels using 12 diverse proteins with
receptor-specific ligand libraries containing up to 130Gflevules, comprising known ligands
and decoys with similar physical properties but distingtalogy. We also present and test a
straightforward protocol for the choice of the flexible thgs, which is based on the ability of
the receptor structure to accommodate the set of knownd®afihis strategy is an unbiased
approach to identify the most important residues likely ¢éorélevant for induced fit effects,
which allowed us to improve EFvalues by~35% on average with respect to rigid-docking.

1 Method

FlexScreehis an all-atom docking approach based on the stochastielimgmethod for
the energy minimization and a simple, first principle bagednistic scoring function that
contains a sum of the Van-der-Waals, electrostatic Couland angular dependent hy-
drogen bond. The Van-der-Waals parameters have been takarOPLSAA, the partial
charges of the receptors have been computed with f1@& hydrogen bond parameters
have been taken from AutoDotk The method enables continues rotation up to 15 side
chain bonds of the receptor in the energy optimization praoe

Scoring performance of the Flex-Screen approach has bewhimarked by using 12
target proteins of the DUD datab&seith relatively small binding cavities that are com-
pletely buried from solvent. For each target the databadedes a set of annotated ligands
(up to 350) and a set of decoys containing about 36 molecotesth ligand that resemble
the particular ligand in physical properties, but diffepadogically, so that they unlikely to
be binders. The following receptor have been analyzed: égwin receptor, Cyclooxynase
1, Cyclooxynase 2, Estrogen receptor agonist, Glycogespitarylase beta , Glutacor-
ticoid receptor, Mineralcorticoid receptor, Purine nodiele phosphorylase, Progesterone
receptor, Retinoic X receptor alpha, S-adenosyl-homeaysthydrolase, and Thymidine
kinase.
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Docking and screening performance has been evaluated byutog the enrichment
of annotated ligands among the top-scoring molecules afteptor-specific database

BF — (concentration of known ligands found in top — ranking subset)
L=

1)

whereE Fo equals the fraction of annotated ligands that bind to thep®e in the dock-
ing calculations (binding energy less than zero) and, ftheze shows the efficiency of
ligand docking, wherea&' F} indicates screening efficiency with the maximum possible
value of 37.

In order to treat receptor flexibility for all systems at arbiased level, some uniform
scheme for choosing the flexible residues has to be implesderin the present study
potentially flexible residues have been identified by raggithat majority of the known
ligands must have a negative binding energy to the recep@mhave, therefore, analyzed
a list of ligands that are unbound in rigid-receptor docKimga specific target and found a
set of residues that most often cause energy clashes wégé ligands (vdW energy above
20kJ/Mol). These residues have been ranked according toutder of clashes and form
a list of flexible residues. Finally, several top-rankingideies from this list have been
treated as flexible.

(concentration of known ligands in database)

2 Results

We have found significant limitations of rigid receptor misdihat for some targets fail to
bind even 50% of the known ligands to the apo-structure optiaéein. The enrichment
rate does not correlate with docking performance and is @iyl for 4 receptors :ER-
agonist, COX2, MR, PNP (see Fig.1). For the other receptorelement rates remain
poor, in high correlation with a previous study of the sami@asé.

We have investigated a soft- and flexible-receptor apprations, by shifting or op-
timizing (soft- and flexible-docking, respectively) of si¢hains from the list of flexible
residues to adapt binding pocket for annotated ligands.

As can be expected, both models are effective in finding bhopgdbses for ligands that
do not dock in the rigid-receptor calculations, wherebyftlaetion of annotated ligands
that bind to a receptoi{F1qo) increases monotonically with the number of shifted/fléxib
residues as illustrated in Fig.2. The variation of enrichtmate, however, is not monotonic
and reaches its maximum at about 3-8 flexible/shifted residar major receptors. Since
the energy correction accounting for receptor reconsomnds omitted in soft-receptor
model, it is not surprising that this method is not so sudoéssth regards to the enrich-
ment performancel' F; do not even reach the values obtained in rigid docking fortmos
receptors (Fig.1, left panel). Unlike soft-receptor, fld&ireceptor model increases enrich-
ment rates in comparison with the rigid receptor model fofrdin 12 targets (Fig.1, right
panel). The scoring performance of flexible-receptor doghé good £ F; > 20) for 8 of
12 targets (in comparison to 4 in the case of rigid-dockimg) medium (0 < EF; < 20)
in the remaining 4 cases. In contrast to rigid-receptor aagkvhere for 4 targets screen-
ing results are unsatisfactory , we now fifd > 10 for all targets.

These results show that accommaodation of ligand-inducetkjor reconstruction by
rotating of receptor side chains that are most often inwbivesteric clashes between a
protein and known ligands can notably improve performarfceisual screening. The
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Figure 1. Comparison of enrichment factors of rigid- and-s@liexible)-receptor models for 12 receptors. The
numbers of flexible residues are: 8 (AR), 9 (COX1), 3 (COX2JER-agonist), 6 (GPB), 6 (GR), 6 (MR), 3
(PNP), 7 (PR), 11 (RXR-alpha), 2 (SAHH), and 3 (TK). In softeling selected residues are shifted by 0.25nm.
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Figure 2. Variation of enrichment factors with the numbefiefible residues employed in flexible docking.

present algorithm does not require empirical assumptiép®ssible soft spots of the re-
ceptor binding pocket. Instead, accuracy of the methedrdép@ainly on the number and
variety of ligands known to be bound to the specific targetorly a limited number of
known ligands is available, compounds with similar phylsgraperties may be used to
explore the active site and create a list of flexible residues
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Molecular solvation is a fundamental factor in biologicabgesses, such as protein folding,
receptor binding or enzymatic reactions. Currently, estés of the hydrophobicity of amino
acids are often derived from solvation (or transfer) freergies of side chain analogs. Such
an approach implicitly assumes that contributions fromkthekbone and the side chain to the
free energy of solvation are additive. However, it is welbkm that, in particular for polar
amino acids, the properties of side chain analogs and anuids aan deviate significantly.
Based on the relative hydration free energies of the amiitbpairs Ala-Ser, Val-Thr, Phe-Tyr,
Val-Ala, Thr-Ser, Phe-Ala, and Tyr-Ser determined from ecolar dynamics simulations, we
quantitatively trace the molecular origin of these dewiadi to two effects, solvent exclusion
and self-solvation. Solvent exclusion accounts for theicgdn in solute-solvent interactions
as one part of the solute occludes other parts of the solige,tkee presence of the backbone
lowers the degree of direct interaction possible betweensttie chain and surrounding wa-
ter. While solvent exclusion applies to polar and apolarrandcids alike, self-solvation is
specific to polar amino acids and results from strong, dé@tramolecular interactions be-
tween the polar functional groups of the side chains andrpotaeties in the backbone, often
through hydrogen bond formation. Thus, the contributiorsef solvation to the solvation
free energy is strongly conformation- and environmentesielent, and, therefore, the correct
treatment thereof poses a challenge to applications imglsolvation processes. Implications
for the utility of hydrophobicity scales and connectiondrnplicit solvent models are briefly
discussed.

1 Introduction

Proteins, like most other biological macromolecules, fiomcin aqueous solution. There-
fore, one has to take into account the influence of solvenherstructure and thermo-
dynamics of proteins, in order to understand their biolagfanction. One fundamental
principle for the description of this effect is hydrophabicwhich is often quantified by
the partitioning of (model) compounds between water andoatea medium.

Despite many successes, there are well documented probksosiated with the use
of hydrophobicity scales derived in this manner: Firstyvéifferent transfer free ener-
gies were obtained depending on the solvent used for th@aplhasé Second, in many
approaches the raw data are obtained from side chain analagse applied to the corre-
sponding amino acids. This assumes that solvation fre@mseare additive, i.e. that the
solvation free energy for the amino acid of interest is tha s the solvation free energy
of glycine (accounting for the contribution from the peptitackbone), and the solvation
free energy of the side chain analog. However, as can be sefeig.i 1a there are sig-
nificant deviationsfAAA A,,;,,) from this assumed additivity relationsRip. In the most
extreme case (Ala—SerNAA Ag,;, is almost5 kcal/mole. A highAAA A, can also
be seen in other apolar-polar pairs (Val-Thr). For amina geiirs of like polarity and
relatively similar size (Ala—Val, Ser—Thr), the differaascof approximately 1 kcal/mole
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Figure 1. a.) Relative solvation free energy differencesalected amino acid pairs&(AA?O/l‘v) and their
corresponding side chain analogsh A%S ). The resulting difference betweeAAA#44 and AAAZS

solv soly

(AAAA,,,) is caused by interactions between the amino acid backbodehe side chain (the so-called
"non-additivity”). The contributions of the two main effisccausing non-additivity in amino acids (self-solvation
and solvent exclusion) are depicted in part b.) on the rigte of the figure.

between side chain analog and amino acid results are staltistsignificant, but much

smaller than those obtained for the apolar—polar pairs.hadifference in size between
two amino acids of similar polarity increases, so does theéatien from the respective
side chain analog results (Ala—Phe, Ser—Tyr).

Several effects were assumed to be responsible for thesatidasg: First, one has to
take into account theolvent exclusiaorsince the backbone reduces the solvent accessible
surface area (SASA) of the side chain and vice versa. Thendeoportant concept has
been referred to aself-solvatiod . In apolar media, polar side chains interact with the
polar groups in the peptide backbone, which effectivelydothe hydrophilicity of the
side chain, as well as of the backbone.

The goal of the present study is to determine the moleculgmoof any deviations
from the additivity relationship, rather than verifyingetimere existence of such differ-
ences. For this purpose, we concentrated on only a few ancids avhich represent a
broad range of distinct physicochemical properties (ealanity and size). Furthermore,
we (primarily) calculated relative rather than absolutdragion free energy differences.

2 Methods

Relative solvation free energy differenceA( A,,;,, ) were calculated for selected pairs
of N-acetyl-X-methylamide amino acida\(\ A,,;, of Ala—Ser, Val-Thr, Phe-Tyr, Val—
Ala, Thr-Ser, Phe—Ala, and Tyr-Ser) and pairs of the comedjmg side chain analogs
(AAASS  of methane—methanol, propane—ethanol, tolupreeesol, propane—methane,
ethanol-methanol, toluene—methane pratesol-methanol) by using thermodynamic in-
tegration and Non-Boltzmann Thermodynamic Integr&tiothe CHARMM22 all-atom
protein force field was used.

Gas phase free energy differences were obtained based geviamynamics simula-
tions at 300 K. All gas phase simulations had an overall leon§B4 ns and were repeated
at least five times. The solvent simulations lengths varievben 2.1 (for side chain
analogs) and 42 ns (for full amino acids, using NBTI). Soh&mulations were repeated
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at least three times.

3 Results and Discussion

To estimate contributions from solvent exclusion we coragolvation free energies for
amino acids with the charges of all backbone atoms set to(2efo4 " B5) since the
presence of the uncharged backbone prevents a compleatisolaf the side chain. Thus,
by taking the difference betweehA A¥"ch- BB and AAASS | one can estimate the free
energy contribution from solvent exclusion by the backboné¢he side chain.

Since the removal of either the backbone or side chain chdtga Avmch-5¢) or all
chargesQ AALJ ) also leads to the extinction of all electrostatic intei@ts between side
chain and backbone (thus also eliminating self-solvafith® combination oNA A, ,
AAAunch-BB - NN Avneh- SC and AAALYI “can be used to estimate the self solvation.

ConsideringAAA A, in Fig. 1a and the self-solvation and solvent exclusionigont
butions in Fig. 1b, it is possible to distinguish two casessti-the mutations involving ap-
olar amino acids (Val-Ala, Phe—Ala): Here, the side chaal@gs give acceptable approx-
imations, if solvent exclusion is considered. Second, théations involving polar amino
acids (Ala—Ser, Val-Thr, Tyr-Ser), where self-solvatidays a considerable role. How-
ever, there are mutations involving polar amino acids, hithout a large self-solvation
term (Phe—Tyr and Thr—Ser): In the case of Tyr, the polar gsare too distant from the
backbone, and therefore there are no contributions frofrssélation. In Thr—Ser, on the
other hand, the side chain hydroxyl groups are almost esjaidli from the backboné .1
and2.45 A), leading to very similar self-solvation contributionvehich cancel each other
out. Our results imply that a correct treatment of both selfsation and solvent-exclusion
is fundamental for an accurate estimation of the solvatiea &€nergy of biomolecules (e.g.

in implicit solvent models).
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Key residues of the oxygen evolving center of Photosysteandlexamined by a conservation
analysis using a previously constructed profile Hidden Mearkiodel. The analysis revealed
for some of the crucial residues a unexpected flexibilityhef aminoacid character.

1 Introduction

In the evolution of life on earth, oxygen producing photasysis is of central importance.
The oxygen evolving center is part of Photosystem Il in ptaroroplasts and is located
near to the luminal site in the reaction center formed by timigits D1 and D2 of Pho-
tosystem II. Water binds to the manganese cluster of theiogamenter. During the water
splitting reaction, electron and protons are abstractau fivater involving the nearby Ty-
rosine Yz (Tyrl61 of the D1 subunit). After four oxidation steps, nmiéar oxygen is
released. From ¥, protons are transferred via several protein residuesatdutihen and
the electrons are used to restore the oxidized special ppasrknown that in addition to
Y z and the manganese cluster, a calcium ion and a chloride éonesded for the oxygen
formation, but the detailed mechanism of oxygen format®still under debate. Even
in the available crystal structures of Photosystem Il wihsonable resolution, the exact
organization of the manganese cluster is not di¢aowever, several residues in the D1
subunit were suggested to coordinate the oxygen evolvintecer to influence the oxy-
gen formation due to interactions with,¥. Namely Asp170, His332, Glu333, His337,
His342 and the C-terminal of Ala344 are likely to coordinatanganese ions; Glul89 is
suggested to coordinate the calcium ion and to be part obproansfer pathway from
Y 2;3 His190 abstracts a proton from,Y*

In the here presented work, the conservation of functignatiportant residues is
analyzed by sequence alignment using a previously conettyarofile Hidden Markov
Model® Our analysis indicates that some of the functional impantasidues are not as
strictly conserved as one might expect.

2 Material and Methods

Using a previously constructed profile Hidden Markov Modethie D1 subunit of Pho-
tosystem Il and its ancestor subunit of bacterial react@nters] 226 D1 sequences were
aligned using the HMMER softwaieThe so-constructed alignment was used for the con-
servation analysis.
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Function Residue C (%) ex (%) ex (%)

Manganese coordination Aspl170 98.Asn 0.9 His 0.4
His332  100.0
Glu333 100.0
His337  100.0
Asp342 100.0
Ala344  100.0

Y ~ function Tyrl6l 100.0
His190  100.0
Calcium binding Glul89 95.1 Asp 35 Lys 1.3

Table 1. Conservation analysis of residues of the D1 sutsuggested to be involved in oxygen formation.
For each residue the conservation (C) and the exchangeg@edn in %. Bold characters mark aminoacid
exchanges, for which mutational studies in the cyanobacteSyncheocystisp. PCC 6803 that this mutant
does not grow photoautotrophicallly. Italic character kpaminoacid exchanges for which mutational studies in
Syncheocystisp. PCC 6803 showed, that the mutant still grows photoaghbically3 78

3 Results and Discussions

For all examined residues (see Table 1), a high conserviatmmserved, which is not sur-
prising, since the sequences of the D1 subunits show ange/eeguence identity of about
85 %. Experimental evidence exists, that Asp170 is partehtgh-affinity binding site for
the first manganese ion which is first photo-oxidized durhngltght-driven assembly of
the cluste? Whether Asp170 also ligates the manganese ion, which ipfictb-oxidized
during the oxygen evolving reaction is still a matter of de§al® Because of its im-
portance one would expect that especially Asp170 shoultriodysconserved. Moreover,
mutational studies showed that an exchange of Asp170 &ledlisxygen evolution in most
case$ Nevertheless our study indicates that Asp170 is not stradhserved in contrast
to the other proposed manganese coordinating coordinasidues. We also observe an
Asn and an His at the position 170. AspX#6lis mutants are photoautothrophic, but in
Asp170-Asn mutants oxygen evolution is nearly abolisRett.is possible that the ex-
change of Asp~Asn is only an artifact of the protein sequencing technidgigt it might
also be that although Asp170 is very important for the oxygesiution, the protein can
restore the function without this residue, maybe by seciedsutations.

Tyrosine Yz (Tyrl61) is crucial for the function of the Photosystem lac&on cen-
ter, since through its radical state, it transports thetedas from the water (bound at the
manganese cluster) back to the special pair and accepthalpootons during water split-
ting. Since it is assumed, tha}; is initially protonated, a base is needed near to tg
abstract the proton of . His190 has been suggested to be this BaBeth His190 and
Tyrl61 are strictly conserved in our analysis, which shdvesrtcrucial importance in the
reaction mechanisms. Glu189 was proposed to accept a pgrotmrHis190 and thus to
be part of a proton transport system. Moreover, it is suggktst coordinate the calcium
ion.2 Our study shows that Glu189 is not strictly conserved. Théatian Glu189-Asp
in the cyanobacteriurByncheocystisp. PCC 6803 led to organisms that could not grow
photoautothrophically. However, we observe an Asp at theitipn of Glu189 in some of
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the D1 sequences. Thus, it might be, that either anothetuesian take over the function
of Glu189 or that organisms with Asp189 differ in their prnotoansfer mechanism.

4 Concluding Remarks

The functionally crucial residues such as Tyr161 and Hisa6Qvell as several suggested
manganese coordinating residues (His332, Glu333, HisA3p342 and Ala344) are
strictly conserved. Surprisingly the residues Glu189 asg1¥0, which are also thought
to be very important for the function of 2rand the manganese cluster, are not conserved
in the same extent. Moreover, they are also exchanged toawiats for which it is known
that these mutations prevent oxygen production in the dyacteriumSyncheocystislt
might be that although Asp170 and Glul89 are very importanttfe oxygen evolution
that the protein function can be restored without theselues by second site mutations.
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Membrane bound and pore forming viral proteins like M2 frarfiuenza A, Vpu from HIV-1 or
3a from SARS-CoV show in their monomeric form high flexilyiland adaptability in different
lipid bilayer environments. Their conformational spaceemthese conditions has been studied
by ample molecular dynamic simulations.

The understanding of the abilities of the monomeric unitssisd to further explore the energy
landscapes of the molecular assembly of multiple monomEng newly developed protocol

screens the full high dimensional search space leadinggtdyhreliable pore models. After

minor refinement e.g. with short molecular dynamics sinoifest they are suitable for the
use in drug screening. Furthermore the evaluation of theggriandscapes allows drawing
conclusions about the gating mechanism of the pores.

1 Introduction

The genome from different viruses encodes a series of memaliraund or attached pro-
teins. These proteins fulfill a broad range of functions aredadten essential in the virus
reproductive life cycle (see also Patargias et al. in thizpedings p. 93). Some of these
proteins include Vpu from HIV-1 which helps degrading the4Ci2ceptor and enhances
the particle release (virion budding¥. M2 from Influenza A which facilities the viral en-
try into the host cell via the endocytosis pathwa8a from SARS-CoV plays an important
role during the virion releask All of these proteins have in common that they assemble
within a lipid environment to form multimeric homooligonsawhich function as pore or
ion channel. Unfortunately all membrane proteins are lpangstallisable which makes it
a challenging task to get atomistic x-ray data for this kifgmteins. Currently the best
source for structural data are NMR studies, which are uglialited to monomeric forms
and can only provide information about the assembled paderuspecial condition.

2 Computational Method

We herby present an approach to derive structural dataéaagkembly of viral membrane
proteins within a two dimensional lipid bilayer environnterstarting point is to screen
with experimental and computational methods the virusesepr sequence for putative
transmembrane regions, which consequently could forme. por

2.1 Monomer Molecular Dynamics

The transmembrane spanning parts are modeled as ideas$atid embedded into a phos-
pholipid bilayer (POPC, but also DPPC, DDPC and DTPC). Aftepwise minimization
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they undergo multiple 10 ns GROMACS MD simulation with fulegsure and temper-
ature coupling. By applying a principal component analyBi€A) the conformational
space of the monomer is analyzed and an average structueaésaged. As the differ-
ent proteins can develop significant kinks and bends thisistessential to derive a good
starting structure for the following assembly.

2.2 Assembly Protocol

To sample the whole conformational space of a pore assernbljigid environment is
considered as two dimensional space in which the assenitdyg fdace. Furthermore ho-
mooligomer pores are considered symmetrical towards tiegitral pore axis. Monomers
are placed around the central pore axis, while the follovdegrees of freedom are sam-
pled in a systematic way. The distances between packeehéticransmembrane proteins
usually show values around #0 To cover weak and tight packing interhelical distances
in the range from 8 to 12.8 are sampled. The expression 'angle’ is used to describe
the rotation of each monomer around its own helical axishidase of homooligomers
there is only one value per conformation, as due to symmétmyanomers are oriented in
the same way towards the central pore axis. In the case abodigomers it is necessary
to sample multiple angles, one for each non-symmetricalanaar. In some cases like
M2 from Influenza A it is possible to narrow the search spagriicantly, as it is known
that His-37 and Trp-41 play an important role in the protonduectance through the pore.
They have to face inwards which narrows the search by at B#asb 120°. The tilt de-
scribes the orientation of the helical axis towards the nramd normal. As membrane
proteins can develop significant tilts up to 58 it is also required to sample this dimen-
sion of the conformational space in a sufficient way. Fin#ily sidechains are optimized
and the energy for each conformer is evaluated. The gearakamnd energetic opera-
tions have been implemented with SVL in MOE (Chemical CornmguGroup, Montreal
http://www.chemcomp.com/ ).

3 Pore Assembly

The quality of the pore models generated by the here pres@ntdocol have been eval-
uated for M2 from Influenza A. The GRMSD of the best generated pore compared to
the established model 2H95 is 2.08Ghis excellent agreement speaks for the strength of
the approach. To illustrate the abilities of the above deedrassembly protocol detailed
data for Vpu from HIV-1 is shown in Figure 1. In this case mdrart one minimum ap-
pears on the high-dimensional energy landscape. While sdrttee 5 resulting models
may be excluded due to experimental evidence, some mayseqralternative conforma-
tions, responsible for multiple conductance st&teésTo push the method to its limits it
was attempted to generate a full pore model for 3a from SAR$(dot shown). After
assembling the monomeric unit with three membrane spanparg, it was assembled to
form a tetrameric pore.

4 Conclusion

Here we present a sophisticated approach to screen therpmtfonal space of a protein
on the basis of a forcefield which enables to scan the wholelsspace with an accept-
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Figure 1. In the top row representative energyplots for sembly of Vpu from HIV-1 are shown. The pore
models which correspond to the minima in the plots are showvthe lower row. Trp-23 (blue) and Ser-24 (red)
are highlighted. Both residues play an important role fergtability of the pore and the conductance of ions.

able resolution. By reasonable simplification and consiti@n of symmetry of the studied
proteins a significant confinement of the search space caralde.nThis enables the re-
solvability of the search in an acceptable sampling timee Ghality of the constructed
structural models does not rank behind any experimenthhtgae. In fact the careful
optimization leads to more consistent models. When exparial results are taken into
account e.g. in the form of a distance restraint, signifidarther confinements of the
search space can be made. This boosts the sampling speedatlitile same time an
improved quality can be achieved.
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The interactions between proteins and solid surfaces aengal for a number of applica-

tions, such as functionalising biomaterials and for mdditglants. The understanding of

fundamental forces and processes involved in protein ptisarhas a great importance in the
construction of new, biocompatible materials. Our recdfariehas been focussed on adsorp-
tion processes and protein dynamics on the surface, imgugiotein cluster formation and

cluster diffusion. Hen egg white lysozyme adsorption on eansiurface is an excellent model
system for these investigations. Despite recent theatetiod numerical investigations, in-
cluding Brownian Dynamics (BD) and Monte Carlo (MC) simidats, many atomistic details

of lysozyme adsorption, cluster formation and proteirgtey(s) diffusion on the mica surface
remains unknown.

Here, for the first time, we present results of fully atongisiolecular Dynamics (MD) simu-

lations of hen egg white lysozyme (liee.pdb) located in thighbourhood of a mica surface.
Protein adsorption is driven by electrostatic forces andtemgly depends on ionic strength.
We have therefore examined two systems: solvated, newgrakfig white with ionic strength

equal 0.5 M and 0.02 M respectively. As a reference, a trajgaibtained for the isolated and
solvated protein in ionic strength 0.5 M is also used. Cafalysis of four 20 ns trajectories
provides an insight into early events during lysozyme gattmm on the mica surface, as well
as influence of the surface and different ionic strength erptiotein structure and stability.

1 Introduction

Interactions between proteins and solid surfaces are tden a number of applications,
such as functionalising biomaterials and for medical imfgdaThe understanding of fun-
damental forces and processes involved in protein adsorpts a great importance in the
construction of new, biocompatible materials. Our recdiurehas been focused on ad-
sorption process and protein dynamics on the surface,dimgyprotein cluster formation
and cluster diffusioh Hen egg white lysozyme (HEWL) adsorption on a mica surface
is an excellent model system for these investigations. iespcent theoretical and nu-
merical investigations, including Brownian Dynanfiés Monte Carlo simulatiorfsand
numerous Molecular Dynamics studigsnany atomistic details of lysozyme adsorption,
cluster formation and protein/cluster diffusion on the anstirface remains unknown.

Here, for the first time, we present results of fully atongsi$tiolecular Dynamics sim-
ulations of HEWL (liee.pdb) located in the neighbourhood of a mica surface. Protein
adsorption onto a charged surface is driven mainly by elstitic forces and so strongly
depends on ionic strength. We have therefore examined tatersg: solvated, neutral
HEWL at pH=7 with ionic strength equal to 0.5 M and 0.02 M, esjvely. As refer-
ences, trajectories obtained for the isolated, solvatetepr in these solutions are also
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used. Careful analysis of these four 20 ns trajectoriesigesvan insight into the early
events during lysozyme adsorption on the mica surface, dsawehe influence of the
surface and different ionic strength on the protein stmgctund stability.

2 Methods

The crystal structure of HEWL (liee.p8)was the starting structure of all our simulations,
with all four disulphide bridges kept. The calculations eerformed using the NAMD
packagé The protein was placed in a rectangular box of water motec(T1P3) that
extend 8A from any protein atom. In the case of protein-surface syste SiQ surface
(mimicking a mica surface) with dimensions x=8&\&and y:92.8.& was placed about 9
A away from the closest HEWL side chain andA2way from the HEWL backbone. The
surface was created from silica and oxygen atoms, chargéd €land -0.66 e respectively,
located 1.6A away from each other, in a square array. The resulting seidharge density
o =-0.0217 eA? is almost equal to that of mica at pH=7 (see ref. 4). The HEWifaxe
system was solvated in a water box that extends at leaktfem any protein atom. The
protein or protein-surface systems were then neutraligegidoing NaCl salt with ionic
strength 0.5 M and 0.02 M. Most probable charge states at p¥+& chosen for ionizable
residues. These systems, composed from more than 1500%a00 atoms for HEWL
and HEWL-surface respectively, were subject to 100 ps wexeilibration, 10 000 steps
of whole system minimisation, 30 ps heating to 300 K and 27@qslibration at this
temperature. The production MD simulations were pursue@@ms at 300 K in the NVT
ensemble. The integration step was 2 fs, and the SHAKE algoiand periodic boundary
conditiqns were used. The cutoff distance for both van deal¥\@nd Coulomb interactions
was 12A.

3 Results and Discussion

During the 20 ns trajectory for the HEWL-mica system with Bl%onic strength solution,
no attraction between the HEWL and surface was observed. p@asons with the tra-
jectory for the isolated HEWL show that the interactions &des acting on the protein
are not changed by the mica surface. Overall dynamical feauch as protein mobility,
including the mobility of the loops and changes in their @wnfation, show virtually the
same interactions with water and salt ions. Based on thisameconclude that the elec-
trostatic interactions are the main forces driving the gotsan process, and the solvent
ionic strength 0.5 M effectively screens any electrostatiiaction between the negatively
charged mica surface and the positively charged HEWL. Toezéhe protein dynamics
are not affected by the mica surface (data not shown) undeetbonditions.

A different picture emerges from the analysis of the 20 rjs¢tary of the HEWL-mica
system with 0.02 M ionic strength. In this case a strong etitva between the HEWL and
mica surface is clearly visible, and the protein moves abeid closer to the mica surface
during the simulation. Graphical analysis reveals two iameous processes: the protein
is moving as a whole towards the mica surface, whilst a comdétional rearrangement
occurs without losing secondary structure. This obsewwat supported by RMS and
RMSF analyses. The RMS calculated for the HEWL-mica systailses after 1.4-2.0
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ns at the 2.0-2.8 level, which means that the HEWL doesn't change its folde @lnerage
fluctuations for the whole protein (Ca atoms) are 2%28for loop regions 2.4A2 and for
secondary structures 1.83. From these RMSF results we can conclude that all helices
and beta-sheets are maintained, and that conformatioaabels are accommodated only
by loop and H-bonded turn rearrangement.

The HEWL conformation is more stable when the mica surfacbisent; the RMS
for the isolated HEWL reaches 146 after 20 ns (c.f 2.0-2.% found above). Therefore
the negatively charged mica surface placed close to théiyegicharged HEWL induces
conformational changes accompanying the adsorption psoce

The most important interactions between the mica surfadétenHEWL are electro-
static attractions between the negatively charged sugadehe positively charged Lys1,
Arg14 and Arg128 residues. The distance between the susfatéhe Lysl side chain is
11.3A at the beginning and 54 after 20 ns of simulation. In the case of the Arg14 side
chain these distances are 18 2nd 7.9A after 20 ns, and for the Arg128 side chain 8.6
A and 2.9A respectively.

The Lys1, Arg14 and Arg128 side chains form a triangle (s&tgyths 114, 10A and
14 ,&) whose conformation is better maintained when the micéaseris located close to
the protein. All of these residues are strongly attractetthbysurface and most probably the
observed HEWL conformation changes are forced by thisgteamaintaining its planar
conformation.

4 Conclusions

We have found that the protein adsorption strongly dependsnic strength, and conclude
that the dominant interactions driving adsorption are theteostatic interactions between
the mica surface and the HEWL protein. Close proximity ofrtfiea surface to the HEWL
induces conformational rearrangement mostly confined ¢oldbp regions, so that the
HEWL secondary structure is maintained. The most impontesidlues for the HEWL
adsorption are Lys1, Arg14 and Arg128, whose rigid planpotogy in close proximity to
the mice surface appears to drive the loop conformatioraigés.
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Translation is modulated by various protein factors irteéng with the ribosome. Elongation
factor Tu (EF-Tu) delivers the aminoacyl-tRNA to the ribogd A-site. After the peptide bond
is formed, elongation factor G (EF-G) facilitates transliien of tRNAs to prepare the ribosome
for the next catalytic cycle. The structure of EF-G resemli@t of the complex between EF-
Tu and aminoacyl-tRNA. We apply all-atom and coarse-gaimelecular dynamics to search
for common internal motions of these two molecules.

1 Introduction

Protein synthesis on the ribosome involves a number of jprdéetors that bind at its
different functional sites. Our work focuses on two GTRdn factors which share a
common binding site: elongation factor G (EF-G) and eloigeafactor Tu (EF-Tu). EF-
Tu transports the aminoacyl-tRNA (aa-tRNA) to the aminddigding site (A-site) of
the ribosome, in the form of the ternary complex EF-Tu-GBRRNA. EF-G promotes
translocation of the newly synthesized peptidyl-tRNA frtiva A-site to the peptidyl-tRNA
binding site (P-site) together with its associated mRNPhe structure of the EF-G resem-
bles that of the complex between EF-Tu and aa-tRNA. This isxample ofmolecular
mimicry?; a protein evolved so that its domains mimic the shape of &\tRMlecule. The
N-terminal region of EF-G is homologous to EF-Tu, and thee@niinal region comprises
a set of protein domains that adopted the shape of a tRNAe describe and compare
internal dynamics of both factors, using full-atom and seagrained molecular dynamics
(MD). Our aim was to check whether any similarity exists atsthe dynamical behavior
of the EF-G and EF-Tu-aa-tRNA complex.

2 Methods

Full-atom MD simulations were performed with the Amber9 |uege
(http://amber.scripps.edu/ ). Structures of EF-G and EF-Tu-aa-tRNA
were described according to the AMBER2003 force field. Mespik model of solvent
(GBYE¢ modeP) was used with dielectric constants set to 1 for solutes @nidBwater.
Simulations were conducted at 150mM ionic strength. Thesrature, set to 293K, was
controlled with Andersen scherhe Non-bonded interaction cutoff distance was set to
18A. To analyze 20ns full-atom MD trajectories we applied pijral component analysis
(PCA). Coarse-grained MD employed the Reduced Moleculanaiyics (RedMD)
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Figure 1. Left: the structure of EF-G (PDB code 1FR)yred: domain I(G), green: insert (G'), blue: domain I,

orange: domain I, cyan: domain IV, tan: domain V Right: gtricture of EF-Tu:aa-tRNA complex (PDB code

1TTTS); red: domain I(G), blue: domain II, orange: the acceptensof aa-tRNA, cyan: the anticodon arm of

aa-tRNA, tan: the T-arm of aa-tRNA. Domains I(G) and Il of fle-Tu and EF-G are homologous and common
for GTPasek

packag@, a novel software which has been recently developed in daorédory, with
protein residues and RNA nucleotides represented as hagetscting through harmonic
(for neighboring) or Morse (for nonbonded) potenfial®ynamics was simulated using
Langevin equation (293K) ants trajectory were generated for each molecule.

3 Results

Figure 2 presents correlation matrices derived from ftodkaMD trajectories. For both
molecules, motions of residues from distinct domains arestated and the magnitude of
this correlation is similar for homologous domains | an@ltrongest correlation occurs for
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Figure 2. Correlation matrices: EF-G (left) and EF-Tu-B&lA (right).
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Figure 3. Graphical representation of collective motion&F-G (top) and EF-Tu-aa-tRNA (bottom). Domains
I, IV and V of EF-G and aa-tRNA are marked in yellow. Arrowlsasv the directions of the first three eigenvec-
tors of PCA analysis.

residues of domain IV of EF-G and domain Il of EF-Tu-aa-tRbi#mplex. Three groups
(the T arm, the acceptor stem and anticodon loop) are digghgble in the nucleic part
of the EF-Tu-aa-tRNA complex with strongly correlated mmests of nucleotides within
each group.

To characterize the most significant collective modes ofionstwe applied PCA to full-
atom MD trajectories (Figure 3). The most dominant motioresthose of domains lll,
IV and V of EF-G and those of aa-tRNA of EF-Tu-aa-tRNA compléx both cases, the
first two PCA principal components describe pendulum-lileions (in different planes)
of the three EF-G domains and aa-tRNA, relative to the hogmis domains | and II.
Third PCA eigenvector describes pendulum-like motionsief&domains but for EF-Tu-
aa-tRNA a stretching mode is also seen. We also comparexdtdraal dynamics obtained
with full-atom and coarse-grained MD. Figure 4 shows that rnean square fluctuations
(RMSF) of G, (EF-G) and G and P atoms (EF-Tu-aa-tRNA) observed in full-atom and
coarse-grained simulations are of similar magnitude.

4 Conclusions
We compared internal dynamics of two structurally similgstems: protein EF-G and

protein:RNA complex (EF-Tu-aa-tRNA) applying full-atomdcoarse-grained MD. Our
study demonstrated a certain degree of similarity in thgirashnics, however, still more
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Figure 4. RMSF of G (EF-G, left) and G and P atoms (EF-Tu-aa-tRNA, right) derived from full-atonda
coarse-grained MD simulations.

work is required to investigate its charaéter
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A novel DNA mediated anti-cancer mechanism is aimed at Istadg DNA G-Quadruplex
structures. G-tetrads display high polymorphism and anedan the telomeric ends of chro-
mosomes. In normal cells they exist as G-tetrads, produaings that prevent the access of
chromosomal DNA to the replication machinery. During cellislon, these G-tetrad knots
are resolved and the G-rich DNA is exposed to the replicati@thinery as single strands.
Small molecules stabilizing G-Quadruplex DNA structures thought of as potential novel
anti-cancer agents. Several novel DACA analogues have desggned, synthesized and crys-
tallized in reaction with the G-Quadruplex DNA. Regretiatiiey failed to diffract even syn-
chrotron light. In the present investigation these anasguere studied for their binding in-
teractions and stabilisation potential of a G-Quadrupl&AQTGGGGT)* using molecular
mechanics and combined QM/MM molecular docking techniques

1 Introduction

The premise for the present study is that stable drug boundMdanalogue complexes
with minimal bound free energy show potential to evolve dseancer agents. A variaty
of docking algorithms have been tested for docking a numtieACA analogues in the G-
Quadruplex DNA. The resulting binding poses have been cosata the crystal structure
of a similar drug molecule, daunomy¢iPDB 1D:100K). It turned out that the results
of spherical polar coordinate shape complimentarity ba$Exd? docking, and fragment
growth based Glide-XP(using the OPLS 2005 force field) resulted in realistic bigdi
poses. The results were enriched by describing the polanizaf the charge field in the
drug - DNA interface by QM/MM single point calculations. T method was density
functional theory (DFT) B3LYP and calculations were catraut wihth both 3-21G and
6-31G* basis sets through an iterative Quantum Polarizeckidg Workflow!. In the
following the results of the different molecular dockingh@iques will be discussed with
an emphasis on the differences between force field basedamblimed QM/MM based
predictions.

2 Motivation

Molecular docking is a means of computationally investigaligand binding to a receptor
in order to reduce the laboratory work, as well as justifyrafeal/physical explanations
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for observed fenomena. Docking programs employ an empeitargy function to deter-
mine and optimize the interaction energy between the drndidate and the active site.
Structure-based docking methods automatically samp@tigonformations and protein-
ligand interactions with a specified region of the proteirfaze. MM docking results are
reported as the lowest energy/highest scoring pose(skfdr kgand, typically one pose
for alarge compound collection. Hybrid force field eleciostructure docking algorithms
divide the energy function into a quantum mechanical pastdeing the ligand, a force
field based part describing (most of the) receptor and anactien part taking care of the
embedding of the two descriptions in the area where theyaoteln the current case, we
see the application of molecular docking as a trial and grrocess and seek to validate
the predictions based on comparison with similar strustspdved crystallographically or
by NMR studies. Rigid docking turned out not to be succesfylroducing the drug bind-
ing poses observed in the crystal structure. This servedastigation to examine higher
accuracy methods.

3 Materials and Methods

Different DACA analogues were sketched and minimized ingfesse using the UFF force
field to prepare an ensemble of starting structures of drugeuntes with no atomic clashes
in their geometries. Several different docking algorithmese used at varying levels of ac-
curacy, i.e. pure molecular mechanics and combined QM/MNhods. Of the algorithms
tested, the HEX and the Schrodinger GLIDE methods produoed §inding predictions
which agreed with the binding clues learnt from a similargdbound crystal structure. All
docking experiments were conducted by blind docking, iighaut specifying the binding
site of the drug molecule in the receptor.

Glide XP is a force field based fragment docking method. QM/Mtdking is achieved
in combination with the IMPACT, Q-SITE and JAGUAR modulesS®¢hrodinger suite,
using primarily the OPLS 2005 force field. The Glide XP scgrianction is designed to
improve the results compared to the SP scoring functiors iBrachieved by adding terms
to the function, the additional terms include: i) Coulomtergy of interacting atoms, ii)
Van der Waal's energy of atoms, iii) Terms to favour bindinteractions, iv) Terms to
hinder binding interactions.

The terms that favour binding interactions include termthyiarameters to evaluate
the hydrophobic enclosures, hydrogen bonding possésliietween neutral-neutral H-
bonding motifs, hydrogen bonding possibilities betweearghd-charged motifs, pi stack-
ing interactions and pi-cation interactions. The terms tader binding interactions in-
clude terms with parameters to score desolvation in theifgrgite, and a term to calculate
the inter-molecular strain energy based on proximity dists of ligand heavy atoms. On
the other hand, the Hex docking algorithm is purely a stmectomplimentarity matching
algorithm based on polar spherical coordinates. The mtz@esurface is represented by
several radial expansions of spherical harmonic basigifume Surfaces are generated for
both receptor and ligand molecules and the shape complarignis scored to arrive at
binding predictions.
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Figure 1. A=Drug 1, B=Drug 2, C =Drug 3, D =Drug 4, E=Drug 5, F ruB 6. 1 & 2 = Hex docking poses,
3 = Glide docking poses. Colour Codes: Blue = Glide XP OPLSB28@d = QM/MM B3LYP with 3-21G basis
sets, Green = QM/MM with 6-31G* basis sets.

4 Results and Discussions

There is an overall agreement between the results of Hex Adel P docking predictions
fig.1, although minor variations existin i.e. side chain confations etc. In general Glide
XP placed the conformations better than the Hex poses whightrhe due to the bias of
the pure shape complimentarity principle of Hex. This ressulthe deviations of chemical
geomtry which are implied better in various force fields.

The important binding features deduced from the crystatsire are:

1) Planar aromatic rings formed stacking interactions li DNA bases, 2) Flexi-
ble side chains were favored in the electrostatically stgbbove regions of the DNA, 3)
The G-Quadruplex terminal surface was enough only to accuate two molecules of
daunomyecin in fully stacked manner.

Daunomycin is made up of a planar four-ring chromophore asulgar moiety, while
the DACA chromophore is a planar three-ring system with aaetfilexible side chain and
no sugar moiety. As the DACA analogues contain aliphatie sigains in contrast to the
heterocyclic sugar moiety in daunomycin, a more compadtipgof the sidechains in the
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DNA groove regions is expected.

DACA analogues; drugl, drug3 and drug4 are more simpletstre containing com-
paratively shorter length aliphatic side chains connetdetie aromatic ring system and
thus the Hex and Glide predictions turned out to agree wellthe case of drug2, an
aromatic ring branches out from the planar pharmacophaonéhnis further bifurcated
with another aromatic ring on one side and an aliphatic sidéncon the other side. Thus
drug? is quite complex in nature, something which might megknowledge of the physi-
cal/chemical parameters for a better prediction. The Heglibg pose exhibits an electro-
statistically less favorable state where the bifurcatedips are dumped in the same region.
This is in opposition to the Glide output in which the bifutica maintains the placement
of the aromatic and the aliphatic side chain bulks on oppasites. In the current case, it
can also be suggested that a combination of geometricalcand field methods can lead
to a robust prediction mechanism.

DACA analogues; drug5 and drug6 are structures which caicaip be considered
as tougher molecules for docking. The complexity is due &rtlong, highly flexible
aliphatic linkers. It evinces that approximations in fofiedd parameters and/or negligence
of force field parameters lead to highly deviating and lessrizble binding predictions
when compared to predictions made by combined QM/MM moddis.inclusion of QM
derived charge polarization clearly has exhibited a begeiormance that agrees with hints
taken from the crystal structure. The Hex predictions plaeelinkers passing through
the terminal surface of G-Quadruplex with the chromophdwegst away from stacking
interactions. Glide XP heavily under-performed the drughling pose with many fewer
interactions between the drug and DNA, which is rectifieddnjocking with included QM
polarized charges.

In conclusion the charge polarization plays a very impdrtafe in drug - receptor
recognition and binding and can be included by combiningjti@al MM and QM meth-
ods. Furthermore our experiments show that simple algosthonsidering mainly the
shape complimentarity perform nearly as well as the forde fiarameters based molecu-
lar docking methods. In overall, molecular docking can biéebechieved by combining
several different methods which utilizes a combinationtedéraical/physical information,
shape complimentarity and induced effects in the drugptecénterface.

Acknowledgments

We are very thankful to all our academic and industrial dmlators. Special thanks to
Nucleic Acids Center at SDU, MC FP6 Project: Nucleic Acid 8&a®rug Design and the
Danish Center for Scientific Computing.

References

1. Clark, G. R., Pytel, P. D., Squire, C. J., Neidle, S., J. Abhem. Soc.125, 4066—
4067, 2003.

. Ritchie, D. W., Kemp, G. J. L., J. Comp. Che(4), 383-395, 1999.

. GLIDE, version 4.5, (Schrodinger, LLC: Portland, OR, @0

4. Cho, A. E., Gullar, V., Berne, B. J., Friesner, R., J. Co@pem.26, 915-931, 2005.

w N

284



Applications of a Novel Biasing Potential to Study
DNA Translocation and DNA Base Flipping

Sean M. Law and Michael Feig

Department of Biochemistry & Molecular Biology, Michigara®e University,
East Lansing, Michigan, 48824-1319, USA
E-mail: {slaw, feig @msu.edu

DNA transcription, replication, and damage repair usuaiiyolve DNA-protein interactions
and structural distortion of the DNA duplex by various enegm For example, during DNA
metabolism, DNA helicases have been shown to separatexdDplA into individual strands
by translocating along single stranded DNA (ssDNA) whileityyyzing ATPL.2. Alternatively,
various enzymes employ a base-flipping mechanism to tackl& Bepair 3. Experimental
studies have demonstrated that DNA translocation and figppf DNA base pairs typically
occurs on the millisecond or longer timesc&fe However, current computational methods are
limited to the nanosecond timescale. Thus, external iatdrare often employed to enhance
sampling in these low probability regions of phase spaceiléAflipping of individual bases
using different restraints has been well establishedomputational studies related to DNA
translocation with respect to proteins is, to the best oflmawledge, slowly emergin§. In
this study, umbrella sampling with a novel center-of-masgegtion onto a predefined path
reaction coordinate was utilized to study DNA transloaaiio the context of the transcription
factor, E2F-DP, protein-DNA complex using implicit sohten

1 Introduction

Protein-DNA interactions involving DNA base flipping and BlXranslocation are vital for
the proper functioning and survival of a cell. However, sind the mechanisms and en-
ergetics associated with these processes using straigbtatar dynamics simulations are
often unfeasible within the available computer time. Thealbiasing potential presented
below was used to study DNA translocation (in the presenae DNA-binding protein)
and is currently being applied to DNA base flipping (in theaatz® of a protein) though its
function can be extended beyond these applications.

2 Development of New Biasing Potential

As a first step to understanding DNA translocation (and DNgedféipping), a new biasing
potential,U,.., was developed and can be described as the projection of omare center
of mass (COM) onto a well understood path reaction coordingis harmonic potential
(added to CHARMM')

Ures - k(t/ - tinitial - t0)2 (1)

can be expressed in terms of its initial COM projection offit® patht;,;;i.;, its COM
projection onto the path at a given timestépits equiliborium COM projection valug,
(relative tot;.,;1iq1), and its force constarit. To elaborate, for a given well-behaved path
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Figure 1. A. COM projection of select nucleotides onto a d=fipath. The translocation direction is shown in
black arrows. B. Free energy profiles of each individual eotitle. The units along the horizontal axis roughly
corresponds to 3.8 angstroms (the rise in DNA).

represented by a set of points, cubic spline interpolasarsed to reconstruct a piecewise
smooth curve and the COM of interest is projected onto thigeclSince the projection of
any point,P(z,y, z), onto a cubic spline involves solving the roots of a quintjic&tion
(which has no closed form solution), the method was simglifig projecting the COM
onto a tangent line (with the assumption that this tangesuffciently close to the real
tangent and remains constant within a given simulation wiv)d Once the projection is
approximated the umbrella potential is applied and is rejgeor subsequent simulation
windows by modifying, at the start of each window.

3 Translocation of E2F-DP-DNA Complex

To study DNA translocation, the DNA-bound crystal struetwf a heterodimeric tran-
scription factor, E2F-DP, (PDBID: 1CEywas used where the path reaction coordinate
was chosen as the DNA backbone. With the exception of the éwaibal nucleotides
from each DNA strand, the COM for each nucleotide was preptcinto its own DNA
backbone (Fig. 1A). After equilibration, the molecular dymics simulations were carried
out at 300 K using GBMV implicit solvent and free energy pregilwere generated using
the weighted histogram analysis method (WHAR®)To facilitate DNA translocation by
one base pair, all values of were uniformly adjusted over the course of 20 simulation
windows away from DP and closer towards E2F, carrying out $0fpequilibration and

at least 50 ps of sampling for each umbrella (while the padletien coordinate remains
unchanged).

The results obtained from WHAM analysis reveal importatgiactions between the
amino terminus of the E2F protein and the DNA. With the exicapof Cyt505 (and its
hydrogen bonding partner, Gua611), the free energy prdfitesach individual base (Fig.
1C) show general fluctuations in the relative free energieighvcan be associated with
the breaking of hydrogen bonds between the protein-DNA dexpgHowever, as Cyt505
moves along the reaction coordinate it encounters a kegiprogsidue, Argl7 (from the
amino-terminal of E2F), that is situated deep into the mgmaove. According to Jordan
et al, this conserved arginine appears to be important dsliggion abolishes DNA binding
though its structural role is uncle#t. Our findings suggest that once the E2F-DP dimer
recognizes and binds to the central CGCGCG sequence, Ailg¥Z an integral part in
hindering DNA translocation.

286



4 DNA Base Flipping

For DNA base flipping, the COM of the central cytosine baseGICAGCGCATGG)
was projected onto the path reaction coordinate which wasesh as the perimeter of
a circle lying in the plane of the nitrogenous base and cedtabout the C3’ atom of
the residue of interest. To induce base openiggyas adjusted over the course of 160
simulation windows towards the major and minor groove, eetigely, carrying out 50 ps
of equilibration and 200 ps of sampling for each individuaidow. The results to date are
in good structural agreement with the current knowletige

5 Acknowledgments

The authors would like to acknowledge financial support fri®F CAREER grant

0447799 and a QBMI Fellowship at Michigan State Universatyérded to S.L) as well as
access to computational resources at the High Performamo@@ing Center at Michigan
State University.

References

1. Caruthers, J. M. and McKay, D. Biglicase structure and mechanis@urrent Opin-
ion in Structural Biologyl2, 1 (123-133), 2002.

2. Saha, A. and Wittmeyer, J. and Cairns, B. Ghyomatin remodelling: the industrial
revolution of DNA around histone®Nature Reviews Molecular Cell Biology, 6
(437-447), 2006.

3. Priyakumar, U. D. and MacKerell, A. D., JEomputational approaches for investi-
gating base flipping in oligonucleotideShem Rew106, 2 (489-505), 2006.

4. Dillingham, M. S. and Wigley, D. B. and Webb, M. Remonstration of unidirec-
tional single-stranded DNA translocation by PcrA helicaseasurement of step size
and translocation speed@iochemistry39, 1 (205-12), 2000.

5. Gueron, M. and Leroy, J. LStudies of base pair kinetics by NMR measurement of
proton exchangeMethods Enzymao261, 383-413, 1995.

6. Yu, J. and Ha, T. and Schulten, Klpw directional translocation is regulated in a
DNA helicase motqBiophys J93, 11 (3783-97), 2007.

7. Kumar, S. and Bouzida, D. and Swendsen, R. H. and KollmaA, Bnd Rosen-
berg, J. M.,The Weighted Histogram Analysis Method for Free-Energy@ations
on Biomolecules .1. The Methaiburnal of Computational Chemistihg, 8 (1011-
1021), 1992.

8. Brooks, B. R., Bruccoleri, R. D., Olafson, B. D., States,JD Swaminathan, S., and
Karplus, M.,CHARMM: A Program for Macromolecular Energy, Minimizatjand
Dynamics Calculationgournal of Computational Chemistdy 187-217, 1983.

9. Zheng, N. and Fraenkel, E. ad Pabo, C. O. and Pavletich,, [Stlctural basis of
DNA recognition by the heterodimeric cell cycle transaoptfactor E2F-DP Genes
& Developmentl3, 6 (666-674), 1999.

10. Jordan, K., Haas, A., Logan, T., and Hall, Detailed analysis of the basic domain
of the E2F1 transcription factor indicate that it is uniquenang bHLH proteins
Oncogend®, 1177-1185, 1994.

287






Characterization of the Quinolone-Gyrase-Interaction
Using Docking, Molecular-Dynamics and
Site-Directed Mutagenesis

Jorn Lenz!-2, Thomas Lemcké, Peter Heisigf, and Andrew Torda!

1 Center for Bioinformatics, University of Hamburg, Bundiasse 43, 20146 Hamburg, Germany
E-mail: {jlenz, tordg @zbh.uni-hamburg.de

2 School of Pharmacy, University of Hamburg, BundesstraSs€@146 Hamburg, Germany
E-mail: {lemcke, heisig@chemie.uni-hamburg.de

Fluoroquinolones are an important class of anti-bactgrialit as with many anti-infectives,
drug-resistance is an increasing problem. Fluoroquiredanhibit DNA-gyrase, an enzyme,
which is able to alter the topology of DNA. However, thereiigydittle structural information.
In the literature, there are two rather different propogaishe binding mode of quinolones.
Via docking calculations and MD simulations, we find bothddirg possibilities and consider
the evidence for each. Work is now underway to test our masligssite directed mutagenesis
techniques.

1 Introduction

Despite modern antibiotics, infectious diseases are ressple for nearly one third of hu-
man deaths worldwide, and bacterial resistance is stillrgent problem. The class of
fluoroquinolone(FQ)-antibiotics is a good example. Thdgoé broad spectrum of activ-
ity, good pharmakokinetic properties and are relativelgaghto produce. However, FQ
resistant bacteria are wide spread.

The functional target and biochemical action of FQs is knowhe drugs inhibit the
A2B> DNA-gyrase tetramer, an enzyme which is able to alter theltmy of DNA by
transient cleavade This is performed by an esterification of GyrA-Tys-OH of the
enyzme to &’-phosphate of the DNA. FQs appear to inhibit the religatibthe DNA
by stabilizing the cleaved form, ultimately resulting inckerial cell-death Furthermore,
studies of natural and in-vitro mutants offer clues as taclwhésidues are involved in drug-
resistancg Unfortunately, the exact molecular action remains larg@lknown. Clearly,
understanding the drug-enzyme-DNA interaction in molactdrms could be the basis for
the development of new FQ-derivatives refractory to rasise. Due to the lack of com-
plete structural information for the tetramer in complextmDNA and FQ, we have been
trying to build molecular models using a combination of dagkmethods and molecular
dynamics (MD) simulations.

2 Methods

2.1 Protein-DNA-Docking and Filtering

The mode of gyrase action can roughly be divided into threé/idual steps. First, the
DNA approaches the protein. Secondly, a phosphate (DNA)osige (protein) ester is
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formed. Finally, the DNA gap is resealed by a trans-estetificn and subsequent DNA re-
lease. How the protein and the DNA find each other can be redarsla docking problem.
Hence, the first step was to generate many possible DNA-emognformations using
a standard protein-DNA docking tdol Results are filtered according to orientations of
the DNA 5-end w.r.t. to the protein’s active site Tyg, distances between GyrA-Tyk-
OH and appropriate DNA cleavage sitéé-(GRYC-3')°, as well as electrostatic surface
potentials.

2.2 Molecular Dynamics Simulations and Molecular Docking

Two successive sets of MD simulations were performed to fiadgible and stable models
of the protein-DNA complex. In the first set, DNA and proteiar not linked while in the
second set, a covalentbond between GyrArF#OH and the DNA 5-end was introduced.
In between, implausible results were discarded. MD sinmiat including 70.000 TIP4P
water molecules, were run up to 2ns using GROMACS

Subsequently, remaining complexes were used for moledaleking of eleven dif-
ferent quinolones using AutoDock4For each of the drugs, 250 different conformations
and their binding modes within a box were sampled. The boxdedised to contain the
potential binding pocket between geand Asp; in the QRDR (quinolone resistance de-
termining region) of GyrA (residues 67-106) as well as the foverhanging bases of the
cleaved dsDNA.

3 Results and Discussion

The first docking session (protein-DNA) yieldedLO00 candidates of which 24 were se-
lected for the initial MD simulations (section 2). Of thesep had distances between
GyrA-Tyr122-OH and the DNA 5end which allowed the DNA-protein ester to be intro-
duced.

We can distinguish these complexes by the orientation ofitteéeic acid w.r.t. they,
helix of the DNA binding HTH motif present in the QRDR. The ficomplex placesv,
in the major groove of the DNA as proposed by Liddindtomhereas the second complex
supports the model of Lapogorfowith a4 in the minor groove of DNA. For each drug
molecule in both complexes, a conformational cluster aialyas performed which was
based on positional RMSD of corresponding drug atoms.

For our Lapogonov-like complex, we found a noticeable défece between the clus-
ters containing the highest scoring FQ conformations. dltfh the drug molecules were
placed within the same binding cavity, they appear to betedtay ~180° as shown in
fig. 1. Amongst all sampled conformations, these drug aearents were found most fre-
guently without showing noticeable deviations with regpecheir quantities. Our model
indicates that the ligands might be spatially fixed with DN#da&nzyme by two main an-
chors. On the one side, the N-containing heterocyclic sulesit at C7 could be able to
interact with the phosphate backbone of guanine or cytagisidues of the DNA. How-
ever, in its protonated form, this heterocycle might algeriact with backbone oxygens of
Segks and Alay4. On the other side, the carboxyl moeity at C3 of the FQs migimhfa salt-
bridge with the free amino-group of guanine. Moreover, asuits could also allow the
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presence of Mg+ ions’, which might fill the gap (7.5-8.5\) between the FQ’s carboxyl-
and keto-group, respectively, and the phosphate backiddhe BNA.

For the Liddington-like model, the highest scoring FQ canfations did not fit into
the proposed binding cavity. However, as fig. 2 shows, lowerisg dockings are found
for each FQ without clear preferences for a certain conftiona Anyhow, all dockings
are in agreement with the common literature since theyfgatie intercalating nature of
the quinolones.

This theoretical data enabled us to identify amino acidsthre currently used to test
the validity of our models with site directed mutagenesis.

) >
T
2 £

Figure 1. Complex of DNA linked to GyrA-Tys, and docked quinolones: COOH-moeities of ligands
point out of (left) and into plane (right); enzyme shown iey\giQRDR in lightblue, Sef, Alass and
Asps7 in a4 helix in yellow, orange and magenta, resp.; G in green, C iioye T in blue and A in
red.

Figure 2. Liddington-like complex of DNA linked to GyrA-Tys and docked quinolones; color cod-
ing as in fig. 1; pictures were built using UCSF Chim€ra
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We have been developing phylogenetic methods based ornirpsitactures rather than se-
quence and fast enough to be applied to large families. A gaadhple of a large family are

kinases. Often, one believes in evolutionary relatiorshipsed on protein function, but one
cannot see the relationships because the sequences hexgedigo far. This is certainly the
case with protein kinases. They are found in most forms ef biut with a tremendous spread
of sequences and even differences in function. They areeal @ndidate for our approach
since there are hundreds of known structures. Phylogetneéis can be built automatically and
they even map rather well to the biochemical annotationshvivere determined manually.

1 Introduction

Historically, phylogeny of large protein families has bdxased on sequence information.
We have been developing methods, which are based on prateatuse, but are still fast
enough to be applied to large numbers of proteins. Here wsidenthe example of
kinases, which are able to alter the activity of enzymes bewinolecules by covalently
attaching phosphate groups. This strategy usually deaotesponse to chemical signals
with some persistence, depending on reversibility andatigion mechanisms.

Kinases are central components in signal transductionar&srand can be found in
nearly all regulatory and metabolic processes in eukasyaied also many prokaryotes
They play a major role in cell growth, division and contrdlleell death, as well as in
hormone response. Changes in human kinase activity car eawseous phosphorylation
and trigger severe ailments such as cancer, diabetes avdegeneratioh Thus, kinases
are suitable targets for the treatment of such diséases

Understanding their evolution could help to explain thec#igefunctions of individual
kinases. It could assist in decoding signalling events &edeimergence of pathologic
biochemical processes. This might contribute to a morelddtasight of drug selectivity
and drug cross reactivity and thus to the development of raffeetive drugs. It may also
aid the selection of kinases used for drug screenings.

There is almost no significant sequence similarity betwhenmrtore distant kinases, so
it is difficult to build reliable sequence alignments. Thigerfamily, however, has been
popular amongst crystallographers, so there is a wealtbleéd structures. This makes it
an ideal candidate for a structure-based phylogeny.

The only similar project in the literature was based on 3h&mstructures and required
human intervention to construct a phylogenetic treBlere, we show how one can use
many hundreds of structures to build a phylogeny completetgmatically.
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2 Methods

The list of kinase structures was assembled from successiveture searchis Subse-
quently, a multiple alignment of those structures was caegbusing HANSWURST.
The guide trees, superimposed structures, and derive@segalignments are analysed
below. A more detailed description of the methods used isrgby Margraf and LenZ.

3 Results and Discussion

In this section we present an excerpt of the results of thgiN&iur Joining clustering on
RMSD values of pairwise superpositions (fig. 1). The mudtigtructure alignment and
the implied multiple sequence alignment of the CMGC membhkosv that the conserved
features of kinases are appropriately superimposed. Tst sigmificant deviation from
functional classification relates to the AGC kinases andTtkegroup. Firstly, 1h1wA is
not clustered with any other member of the AGC group. Segptitgé G-protein coupled
receptor kinase 1omwaA is clustered with ImuoA from the "otlggoup. The superposi-
tion reveals that both structures share important feasuels asy-helix B®> and could be
structurally aligned. Thirdly, the AGC kinases 1cdkA andlkoare clustered with 1phkA.
The structural superpositions indicate that none of ttgnatients are unreasonable. Con-
cerning the TK group members, only three of five were groupgdther. However, they
are interspersed with a TKL group kinase (fig. 1). The renmgitivo kinases of this group
are clustered, but their distance to the CAMK group is cléisan the distance to the other
TK members. Another result of this work is the unusual plaeetof the TGIBR1 kinase
1b6cB. HANSWURST classifies this kinase as most closelyadlto 1m14A. Again, the
structural superposition explains the result. The twocstmes are very similar. Addition-
ally, HANSWURST clusters 1kwpA and 1csnA in one branch. Badttases share most of
the conserved structural features. Nevertheless, thetstal superposition and the corre-
sponding alignment of the sequences indicate that we alifreeproteins in a suboptimal
manner. The p21-activated kinase 1 (PAK1) 1f3mC is placeskdo the cluster of LlomwA
and 1muoA. The second "other” kinase 106yA appears to béeckgwith CAMK group
kinases. A detailed analysis of alignments is given by Eenz

To summarise, the tree is more than reasonable without afgusemisalignments.
Compared to the previous literature attefgtt classification, there are some differences,
especially with the AGC family, but they appear justified. Wheould only agree with
the literature classification of the CMGC and AK groups. Rertore, our methodology
handled an order of magnitude more structures and was fulbynaatic.

4 Conclusion

This work concentrated on kinases, since one can compairesalierature classifications
and biochemical data. Because it is fully automatic andescadell, it can be expanded
to even larger families. This means we are now considerieg evore distantly related
proteins and testing the approach on other large proteiiiésm
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Figure 1. HANSWURST proposed phylogeny for the literature list obgazed kinases; edges are
labeled with estimated RMSD values according to clustemieghod; edges are not drawn to scale;
atypical kinases (gold), typical kinases (cornflowerbJugC kinases(lightblue), tyrosine kinase
like kinases (yellowgreen) depicting the most diversemr@K1 kinases (seagreen), STE (lightpink),
CMGC (magenta), CAMK (orange), uncoloured leaves depichbses of the "other” group.
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Janus kinases (JAKSs) belong to a family of receptor-assatigrotein tyrosine kinases. They
play a crucial role in the JAK/STAT signaling pathways whate responsible for transduction
of growth factors and cytokine-mediated signals. Abnorawtivation of these pathways is
observed in many types of tumors and hematopoetic maligestricIn the current study we
attempt to propose binding modes of caffeic acid derivatitee JAK3, These derivatives are
most likely competitive inhibitors for tyrosine-contaig protein substrates. Insulin Receptor
Kinase (IRK) was used to model an active, open form of JAK3sd8laon JAK2 and JAK3
sequence and structure similarity analyses, residueartbaésponsible for the specific binding
were indicated. Leading compounds were docked and moddiggtta better binding speci-
ficity. The designed inhibitors are being synthesized aait thiological activity will be studied
experimentally.

1 Introduction

JAKs are crucial enzymes, responsible for the signal tnactsmh through the JAK/STAT
pathways, whose abnormal activation is observed in margstgptumors and hematopo-
etic malignancies, making them an important, but still iypexplored target for therapeu-
tic intervention. Our goal was to create substrate conmipetibhibitors of JAK3, based
on our knowledge of the JAK2 inhibitors. Caffeic acid detives, including AG490, are
the potential, promising inhibitofsEven though the sequence similarity between catalytic
domains of JAK2 and JAKS is about 60%, it is difficult to propd®\K3 specific inhibitors.
This is because essential residues (those which form thebAiding pocket or the peptide
binding site) are mostly the same for both kinases. In asidithere are no experimental
JAK3 open (active) conformations. There is, however, an #Rkcture with a bound pro-
tein inhibitor in an open enzyme conformation. Even thougduence similarity between
IRK and JAKs is relatively low, the three dimensional stwet similarity is significant
(Fig. 1). Structural information and JAK2 and JAK3 sequesiceilarity analysis allowed
us to identify JAK3 potential binding sites and to designcsfieinhibitors.
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Figure 1. (A) Superposition of JAK3 on IRK. Yellow ribbon gents IRK, blue ribbon presents JAK3. The green
spacefill atoms represent protein substrate atoms whileethepacefill atoms represent ANP (the ATP analog
which is bound in the ATP binding cassette). (B) JAK3. Thewarindicates the nucleotide binding site, rectangle
indicates the predicted docking sites.

2 Materials and Methods

Three dimensional structures of IRK, JAK3 as well as of JAK@nf the Protein Data

Base were used (1IR3, 1YVJ and 2B7A structures, respeglivBlecause JAKs do not
contain peptide substrates/inhibitors, the IRK structariés open, active form was used
for the identification of the JAK3 ligand binding site. UsiMDE software we docked our
potential inhibitors in the predicted peptide binding siteindicated by rectangle in Fig. 1.
Because the site is relatively large, we identified two delkghat fit to our ligands. These
two subsites are located in the top part and in the bottomgb#ine rectangle.

3 Results and Discussion

We attempted to design inhibitors that form hydrogen bonitls the backbone as well as
with proteins side chains. The H-bonds with the backboneesponsible for the bind-
ing efficacy, and the H-bonds with the side chains are resplerfer the substrate speci-
ficity. We indentified four potential binding sites, two oftin appeared to be very promis-
ing. These are the second (Site2) and the fourth (Sitedgs$angockets detected on the
JAKS surface. The most important residues which form theZSitre: ALA952 Cys1024,
ASP1025, CYS1028 and SER1031. In turn, ARG984, ASN1002 d&d1047 form the
Sited4. The first binding mode accounts for interactions lith backbone of SER1029
and Ser1031. In JAK2 these positions are occupied by SER4086PRO1058 respec-
tively. The second binding mode in JAK3 accounts for intéoas with the backbone
of ASN1002, which in JAK2 is occupied by SER1029 and SER 998sE two binding
modes (Fig. 2) appeared to be the most promising. Concluidings possible to identify
those JAKS residues that are potentially responsible fstibstrate/ligand specificity.

In order to get sufficiently high specificity of the potentialhibitors one can generate
and visualize sequence variability profiles for a given girofamily. Regarding protein
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Figure 2. Binding of the caffeic acid derivatives to two sStéss (A and B) in JAK3. The arrows represent the
modelled hydrogen bonds that link JAK3 with added/modifitmires of the ligand.

Figure 3. (A) Variability profiles resulting from alignmenf 152 protein sequences from the PFAM database
for the JAK family, using the JAK3 structure for visualizati (B) Visualization of 50 protein Homo sapiens
sequences homologous to JAK3 acquired from the SWISS-PRRHNBL database. Each color represents
a number of different amino acids which occupy a particulesifion in the multiple sequence alignment. In
addition, the green color represents ATP and the proteindd\aands.

kinases, sequences from PFAMNd from Swiss-Prot/Trembbata bases were used. A
new applicatioh processes these sequences and visualizes variabilityegrofi3D on a
2D surface of the studied enzyme here JAK3, presented in3Figlhe mentioned above
analysis can account for hundreds of protein sequencesydry fast and brings a lot of
essential data.
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RIO kinases are atypical protein kinases involved in rilmesaynthesis. The structure of RIO2
kinase was optimized. In particular, it was virtually ttrd using a Poisson-Boltzmann model.
An optimal protonation state was determined at pH 7 and pHEehing of a ligand database
against the target protein using a docking procedure wagedasut. Small flexible deforma-
tions of a binding pocket were applied. Two possible inbitsitwith the best scoring function
are presented. The designed leading ligands and a numbeioflerivatives are being synthe-
sized and will be studied experimentally.

1 Introduction

The RIO family (RIO1, RIO2, and RIO3) of atypical serine @iotkinases is conserved
among archaea and eukaryotes. At least two of them, RIO1 #0@ BRre present in
these organisms. Their involvementin ribosome synthesis, a process furetaatto cell
growth and proliferation, makes them attractive targetstfe development of inhibitors.

There are at least three subfamilies, RIO1, RIO2, and RI@8,iawas shown that
the structural features of ATP binding pockets as well asnioele of substrate binding
distinguish RIO1 and RIO2 kinases. Hence, given that themnly one copy of each
RIO subfamily member per organism, this should allow to giesnhibitors with high
specificity, which can selectively target signalling/nieiic pathways RIO kinases are
involved in.

2 Methods

Crystal structure of the RIO2 (1ZAO, PDB) kinase complexé&th WT P, was used. All lig-
ands (ATP, Mn and PO4 ions, and EDO (ethylen glikol) were nezdo Missing fragments
of loops residues (128-130 and 135-142), as well as missitggchains of the residues
(26,41, 102,131, and 133) were modeled using MM and MD method

There are about 108 titratable sites in the protein (15 A3KPRU, 13 TYR, 8IS, 21
LYS, 2 CYS, 20 ARG + termini). Protonation states of the ras&lwere determined using
a well established protocol which combines:

¢ the Poisson-Boltzmann model for a solute-solvent systetim Monte Carlo calcula-
tions’;

e the MEAD suité is used to construct the electrostatic free energy mafrisessribing
interactions between protein’s titratable residues iir tttearged states;
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Titratable site  Occupancy
pH7 PpHS5
ASP 27 0.02 0.59
ASP 196 0.01 0.46
ASP 277 0.23 0.93
GLU 112 0.03 0.53
GLU 116 0.40 0.97
GLU 180 0.03 0.56
GLU 186 0.06 0.59
GLU 244 0.06 0.73
GLU 251 0.08 0.61

Table 1.

¢ the DOPS prografruses those electrostatic free-energy matrices to compeatage
protonation fractions at a given pH and to generate a preztkfimmber of protein
protonation patterns with the lowest energies as found byat#Carlo procedure.

Dielectric constants of the solvent and proteins were s@tand 4 respectively. Prob-
abilities of protonation states were evaluated at ioniergjths corresponding to 150mM
of monovalent salt, at pH values in the range between 5.0 @hd 8

At pH 7, the protonation states are the regular ones, i&y,d¢brrespond to the protona-
tion states of free residues. However, the experimentalition of crystallization was an
acidic one, below 5 pH. The way of protonation in such condsichanges significantly.
In the former, the total charge of the protein is between Bkis while in the latter, be-
tween 17-18. Significant changes of the protonation stagzs detected in nine residues
(see Table 1) none of which, however, forms the ATP bindinckpt

Figure 1. Location of 6 binding pockets (balls represeatgtdf the RIO2 kinase.
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(b)

Figure 2. LYS 120 side chain (a) protrudes into the bindirg sf the largest pocket of the RIO2 kinase (b), the
yellow one.

3 Results

Possible pockets for the ligand binding are presented in EigThe ATP binding site is
splitted by LYS 120 into two pockets (Fig. 2(a). These ardoyebnd cyan space-domains
in the represetnation of the overlapping balls. Changebebtientation of the LYS side
chain results in formation of a much larger binding pocketvah in Fig. 2(b), the yellow
one.

(b)

Figure 3. Ligands with best score function for the RIO2 kenas
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Screening of ligands from LQ silvemvw.leadquest.com ) for the binding (Sybyl
7.3 Tripos Inc.) to the largest pocket were carried out. Fongarison the non-modified
two-region pocket was also scanned.

Ligand with the best score function for the non-modified posiof the side chain of
LYS 120 is shown in Fig. 3(a), and the best score ligand forldéinger binding site is
presented in Fig. 3(b).

4 Conclusions

e Novel potential inhibitors of the RIO2 kinase were designed

e Optimization of the protonation states of ionizable sidaiok is of importance for
the reliable modelling of RIO kinases and for the design efrtmhibitors.

e Flexibility of the active site significantly changes its 8ing properties.
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1.4-DHP-Lipid Forms a Tubular Micellae
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The cationic lipid 1,1.-[3,5-bis(dodecyloxycarbonybpfienyl-1,4-dihydropyridin-2,6-diyl]
dimethylene bispyridinium dibromide (1,4-DHP lipid), angetransfection agent, formed a
tubular micellae during the molecular dynamics simulatioth AMBER 8.0 force field. Result
was confirmed with the electron microscopy showing extendedm-like structures.

1 Introduction

Non-viral gene delivery based on self-assembling strestis an effective medical
tool. The cationic lipid 1,1.-[3,5-bis(dodecyloxycarlytyd-phenyl-1,4-dihydropyridin-
2,6-diyl] dimethylene bispyridinium dibromide (1,4-DHPid, charge q=+2) (Fig. 1) is
a gene transfection ageht. The electronic structure of 1,4-DHP lipid molecule was in-
vestigated by ab initio quantum mechanics, and the supemalar structure formed by
1,4-DHP lipid molecules was investigated by means of md#éraynamics simulation.

Figure 1. 1,4-DHP lipid molecule.
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2 Methods, Results and Discussion

1,4-DHP lipid structure was calculated by Restricted HetFock (RHF)gb initio quan-
tum mechanics, 6-31G* bases set, to obtain the charges facmar dynamics using
RESP algorithm (electrostatical potential based methatgusharge restrains for deter-
mining atom-centered charges). 72 molecules of 1,4-DHig-kvere subjected to MD
(AMBER 8.0 force field, NTP protocol) from the initial struce of a periodic lipid bilayer-
water box, with a small amount of excessive water on the Bypiges to ensure the mobility
of lipid molecules. Temperature was risen gradually froml0K by step of 10 degreesttill
300 K. After 35 ns of MD simulation few lipid molecules turnedth their charged heads
to the side of the lipid bilayer and after 100 ns a profounditabmicelle structure began
to form. The tubular micelle structure (Fig. 2) becomes npmdect during the course of
simulation of 300 ns.

Figure 2. 1,4-DHP lipid tubomicellae side view and top view.

The results of MD simulation were confirmed by electron mscapy, showing the
interwinding tubular structures (Fig. 3).

Figure 3. Electron microscopy of the 1,4-DHP lipid.
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Conclusion is that one of the gene transfection agent 1,#-Mpid structures is a
tubular micellae, and we could expect that such the micelae capable to form a lipoplex
for the DNA transfection

Acknowledgments

This work was supported by Stipend of Finland Academy of i&m#s for IL, and by Lat-
vian Science Council Grant 05.1768. Calculations weregperéd on computers of the
Gdansk Academic Computer Centre TASK.

References

1. Z. Hyvonen, A. Plotniece, I. Reine, B. Chekavichus, G. gbA. Urtti, Novel
cationic amphiphilic 1,4-dihydropyridine derivativesr f®NA delivery Biochim.
Biophys. Actal509 451-466, 2000.

2. Z. Hyvonen, S. Ronkko, M.-R. Toppinen, I. Jaaskelainen, Rlotniece,
A .Urtti,Dioleoyl phosphatidylethanolamine and PEG-lipid conjtegamodify DNA
delivery mediated by 1,4-dihydropyridine amphiphilesControlled Relea$¥9, 177-
190, 2004.

307






Protein Structure Prediction Using
Coarse Grain Force Fields

Nasir Mahmood and Andrew Torda

Center for Bioinformatics, University of Hamburg,
Bundesstrasse 43, D-20146 Hamburg, Germany
E-mail: mahmood@zbh.uni-hamburg.de

In ab initio or de novo protein modelling, one tries to build rotein models from scratch
rather than modelling them on to known structures. Our ntethdased on special purpose
low resolution force fields. They are rather different to trepgproaches by not taking into ac-
count any strict physical model. They are statistical, bete is no assumption of Boltzmann
statistics. In a Monte Carlo simulation, the acceptanderaon can be directly based on the cal-
culated probabilities. Although we have not performed prdgenchmark, the scoring function
works reasonably well to predict 3D models of smaller pratdrom their sequences.

1 Introduction

Protein structure prediction is one of the classic probl&om computational chemistry or
molecular structural biology. Essentially, one would likdoe able to go from the sequence
of a protein (easily obtained) to the structure (expensig @ften difficult to obtain ex-
perimentally). Our interest has been in devising new pupebpabilistic score functions.
They make no use of Boltzmann statistics, but instead rely mixture of Bayesian prob-
abilities based on normal and discrete distributions. Hlis an interesting consequence
if one works with a method such as Monte Carlo, one can basadbeptance criterion
directly on the calculated probabilities without assurmangoltzmann distribution. Monte
Carlo simulations, in their various forms, have been descrby reputable scientists as the
path to the simulator’'s graveyard. This poses the questdn ahy a rational simulator
would venture further into this field. There are two aspezthis problem: 1) the score or
guasi-energy function and 2) the search method. The scootidin may be energy-like or
purely statistical and the search method is used to expgherednformational space. The
score function and search method are often coupled togetitesearch method is driven
by score function to get to native like structures.

2 Method

2.1 Score Function
Unlike most Monte Carlo methods we do not use an energy oesbat calculate proba-
bilities (or ratio of probabilities) directly:

. . P(Xnw)
Probability ratio = ———= 1
YT = Bo) .

P(Xp) andP(X y) are probabilities of old and updated conformations resyelyt
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Figure 1. Bayesian classification: overlapping fragmentsegated from existing structures classified into a num-
ber classes by Bayesian classifier. Each fragment is reyieebby its sequence, structure & solvation.

Our score function is purely probabilistic and relies on tmig of Bayesian proba-
bilities by combing sequence, structure and solvation. Sthgstical models: multi-way
Bernoulli, bivariate Gaussian and simple Gaussian were ttssmodel sequence, structure
and solvation respectively (see figure 1).
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2.2 Search Method

We are using simulated annealing Monte Carlo as a searclooh&itind the most proba-
ble structural arrangement of a given amino acid sequehees@arch method makes two
kinds of moves: 1) biased moves made by drawing a fragmemtd&rragment library gen-
erated from existing protein structures and 2) completalyiased moves. Internally, the
score function is based on dihedral angles, Cartesian owded and sequence description,
so there is some computational work involved in moving bemvepresentations. The ac-
ceptance criterion depends solely upon the probabiliip (@guation 1) calculated from
the probabilities of the new and old structures.

3 Results

Figure 2. Top row: native structures 1fsv, 2hep and 2hfq flefirto right, bottom: respective predicted models.

4 Conclusion

The currentimplementation seems to have a rather goodsepagion of local interactions
and works surprisingly well for small proteins. The sconediion has also been integrated
with our existing protein threading machinery to be usedd8SP8 competition. We are
now working on incorporating simple solvation and hydrogend effects into the initial
probability calculations to better account for long rangteiactions.
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We have built a multiple structure alignment tool which ideatb compute alignments and
phylogenies of vast numbers of proteins. HANSWURST is a @egjve alignment method
with time complexity in the class of @@). It takes advantage of a probabilistic representation
of protein structure which allows for the calculation of miful average representations of
clusters of proteins, and the alignment of those represensa Our tool scales to well over
1000 structures which is enough to cover even the largegipriamilies.

1 Introduction

One or two homologous sequences whisper [...]; a full miglignment shouts out loud.
This quote very eloquently describes the usefulness ofipteilalignments. The signifi-
cance of matches in pairwise alignments can be difficult tlgguagainst the background
noise of random matches. In multiple alignments howevedoan matches across a rea-
sonable number of structures are so improbable that thditddsoom for doubts about
their significance. This is doubly true for multiple struetalignments which really begin
to shine when the relationships between proteins beconensate that sequence methods
start to break down.

Common application areas for multiple structure alignraare in homology mod-
eling?, protein function predictioh) creation of substitution matricgsphylogeny and
structure classificatidh

HANSWURST is built on the assumption that local interactidoetween atoms are
the most important factor in determining the overall stooetof a protein. Therefore,
long stretches of high local similarity should also leadighhglobal similarity. From this
reasoning follows that HANSWURST’s aim is not to producgaithents with optimal
global similarity scores such as RMSD. Instead, good glebates are considered to be a
property which emerges from local similarity.

This is almost the exact opposite of the ideas behind taditimultiple structure align-
ment methods which sacrifice sensitivity for lower struat@ignment scores.

2 Materials and Methods

This work builds on many existing methods such as AutoClasgid body superposi-
tion®, dynamic-programming sequence alignment algorithrigrarchical clustering al-
gorithms®, multiple sequence alignment methods and the computaticornsensus prob-
ability vectors by averaging.

The basis of the alignment method is a bayesian classificafiprotein structure frag-
ments using the AutoClass program.
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Based on the class descriptions in such a classificationawealculate the probability
of a given protein fragment being in a certain class. The $elllcclass membership
probabilities for a given protein fragment can be represgas a probability vector.

The dot product of two such vectors can be used as a similaesure between two
peptide fragments. This score can then be used instead bsttation matrix in standard
sequence alignment methdds

The resulting pairwise alignments of all vs. all structunes wishes to align are then
used to fill a distance matrix. On the basis of this matrixjous clustering algorithms
can be used to construct a guide tree. Currently, the bebktagorithm is derived from
the UPGMA methotf and uses alignments of average probability vectors to astitine
distances between internal nodes of the guide tree. Sucdeneus probability vectors
are computed by averaging the class membership probasitifieach fragmentin a given
column in the alignment. Gaps have no class membershipshaisdib not contribute to
the average. This concept allows each node in the guidedrkavie a set of probability
vectors associated with it which represent the averags cesmberships of that nodes
descendants. Since all the information required to comayi&irwise alignment is avail-

S -00---BaR R
FOOBAZBAR o :iflli::iizii0
Score: 8 e Wb FOO—--BAR

{@" > <l =eeFOOBAZBAR
—~=—BAZ~~m
Score: 3

Y

Figure 1. lllustration of the progressive construction dfi@ee way alignment.

ot
2K
=

able for any cluster of structures, distances betweenearkisan be calculated by aligning
their associated probability vectors. This removes the teestimate distances during the
construction of the guide tree and therefore improves itdityu The alignments of those
average probability vectors are also used to merge the jgairalignments according to
the guide tree.

3 Results and Discussion

As a demonstration of our method’s capabilities, we took gigeins with pairwise se-
guence identities below 25% and built a multiple structuignanent. Computing this
alignment took just over 8 hours of CPU time. Anecdotal en@mesuggests that this
method matches almost three times as many residues as ¢ognpeithods[8, 9] with
some increase in the RMSD scores of the resulting supeiqusit The improvement of
the consensus clustering method over traditional clugjeriethods can be regarded as the
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biggest advantage of HANSWURST over competing structuighement methods. By
representing protein structures as sets of probabilityoveavith regard to a fixed classi-
fication, one can easily calculate characteristic reptasiens of clusters of proteins by
averaging class membership probabilities of aligned tessidn a cluster.

In combination with the method’s speed and scalabilitys #mables the creation of

multiple structure alignments of vast numbers of distarglgted proteins.
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The Anthrax Edema Factor is an adenylyl cyclase responfiblihe overproduction of cyclic
mono-phosphate (cCAMP) from ATP causing host cell deregriat-or optimal catalytic activ-
ity, it should efficiently release the reaction productsMiAand Pyrophosphate. Here we study
the mechanisms cAMP and PPi dissociation using Locally Bodd Sampling and Steered
Molecular Dynamics simulations. Since there is no clearseasus on the number of metal
ions in the catalytic site, simulations were performed ie finesence of one or two cations.
The simulations suggested that the presence of the secotadl iore greatly impairs product
dissociation supporting the hypothesis of an optimal @meeatalytic binding site.

1 Introduction

Anthrax bacteria produce three major toxins: Protectivagem, Lethal Factor and Edema
Factor (EF). EF enters the cell bound to the Protective AmtigOnce released in the
cytoplasm it binds Calmodulin (CaM)Then, a large conformational chargactivates
the adenylyl cyclase function of EF which converts ATP tolicy&MP (cAMP) and Py-
rophosphate (PPi). To efficiently catalyse the cyclizabdbATP, EF must bind ATP, sta-
bilize the transition state (TS) and rapidly release thetiea products. TS stabilization
depends on the binding of Mg ions to the catalytic sité3 The crystal structures of the
EF-CaM complex bound to reaction products (18K&ontains YB* in the active site.
Two Yb** binding modes are observed: an one-ion binding mode and -éotwbinding
mode, which are illustrated in Figure 1. Therefore, it is olgar whether the reaction
proceeds in the presence of one or two ions. The energetiat@mbetween TS stabiliza-
tion and facilitated product release must be understooddtuate which is the optimal
active site arrangement. Here, a study combining Locallyaaeed Sampling (LE$and

Figure 1. lonic (YB™) binding modes observed in the crystallographic structdiféF bound to reaction prod-
ucts? (a) One-ion and (b) two-ion binding modes.
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Steered Molecular Dynamics simulations (SMBJas used to investigate the dissociation
mechanisms of PPi and cAMP from the active site of the Antlizdema Factor under
different Mg? ™ contents. PPi and cAMP dissociated through different subaecessible
cavities. The Mg* content of the active site greatly affected the forces megito induce
product dissociation, indicating that a one-metal ion bigdite would be more favorable
for efficient product dissociation.

2 Molecular Dynamics Simulations of Product Dissociation

LES simulations, performed with CHARM®lwere used to observe dissociation of the
reaction products without priori assumptions on the mechanisfris this case, multiple
copies of either PPi or cAMP are placed in the active site. ifteraction of each copy
with the protein is inversely proportional to the number opies, and the copies do not
interact with each other. We have performed 500 ps simuiatigith 1 to 60 copies of each
of the reaction products. LES simulations were done in vatstarting from the structure
1SK63 for both ion binding modes. The ions Yb were replaced by Mg .

Dissociation was observed at a minimal level of 28 PPi copfesimilar number of
PPi dissociation events was observed: 66 for the onéiMand 67 for the two-Mé"™
binding mode in all simulations. Dissociation of CAMP wasetved with smaller number
(four) of copies, and if more than 18 copies are present Al dissociated in all runs.
The number of cAMP dissociation events observed for theMgét binding mode was
slightly larger than for the two-Mg" binding mode (77 and 61 respectively, for simulations
up to 18 copies).

As shown in Figure 2, there are two discernible solvent-ssibée cavities in each
side of the protein Each product dissociated roughly in tihections indicated by these
cavities, however displaying a significant dispersion ekdciation angles. The details of
the dissociation along these directions were studied by Sktidlations.

In SMD an external force is applied to probe how difficult itésinduce ligand disso-
ciation® Simulations were performed with NAMDfor the fully solvated 1SK6 system,
prepared with Packmél. The force profiles for PPi and cAMP dissociations were (Fig-
ure 3) significantly different in in each Mgbinding mode. The presence of two ions in
the active site greatly impairs product dissociation. Téweds inducing product release
increase from about 1500 to 3900 pN for PPi, and from 950 t@240for cCAMP.

Figure 2. Product dissociation observed in LES simulatida$ PPi solvent accessible cavity and (b) PPi dis-
sociation. (c) cCAMP solvent accessible cavity and (d) cAN3dciation. The solvent accessible cavities are in
opposite sides of the protein.
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3 Concluding Remarks

The simulations suggest that the product dissociationsgean presence of one-ion in
the active site. This is in agreement with the decrease alytat activity observed exper-
imentally for large M@+ concentrationsand suggests that the one-kgbinding mode
for EF is optimal for product release.
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Rigid body modelling based on small angle scattering daganishe in structural biology with
rising importance. Here a software package is presentedhvilies to combine a parameter
screen procedure with easy and extensible scripting détehi The software is intended as
a proof of concepsoftware: The aim is to enable a systematic parameterrsevitkin a rea-
sonable time frame. This goal is reached by a built-in MorgedCalgorithm with simulated
annealing. The software allows for arbitrary symmetriesegations of protein chains. The
scripting interface ensures that even “exotic cases” cadrabdled.

1 Introduction

In order to obtain a structural model from small angle scatte(SAS) two different ap-
proaches are followed in generab initio modelling and rigid body modellingAb initio
modelling is frequently used to get a first impression of thape of a particle, without
need fora priori knowledge. Rigid body modelling, on the other hand, is ablprovide
more details, but requires initial molecular models. Sabvemys exist to put rigid body
modelling into work with SAS data: Some require specific 8ddal restraints, others only
rely on the structural information of the model and the sratit?. In contrast to other pro-
grams the software presented in this article is fast, doeseguire restraints obtained by
some other method, is not limited to particular point groymsnetries, and provides an
extensible scripting interface.

The theoretically most precise approach to SAS-wise rigidykmodelling is compu-
tationally also the most costly one: It is possible to regracconformational change, by
simply applying (an enormous amount of) possible moves th@gubunits. For each such
conformation a check is made how well its theoretical sdatjecurve fits the experimental
data. While this sytematic parameter screen provides amraecestimation for the final
conformation — along with uncertainties for each parametealculating the theoretical
scattering curve many thousands of times is a severe spétehieck.

The presented software library divides the task into twpstd-irst a Monte Carlo-
based search in the parameter space is performed, subsgdoiowed by a conventional
parameter screen. In the first step a region of possibilitisin the parameter space is
found. The final systematic search can then be performestf&stowing reasonable limits
for the movement parameters of the bodies.

2 Software Description

The software is intentionally written as a library in the IRyd programming language
(with some parts in C to gain speed) and not as a stand alogegmno This way rapid
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prototyping was granted, while potential users are enafoledsily write flexible scripts.
Care was taken to have a simple & flexible user interface angriéventing the user to take
nonsensical steps. The design strictly follows an objeaented paradigm throughout the
construction of this library: At the heart of the library iase class from which a class for
holding atomic models is derived. This class makes use of RiDBtionality provided by
the biopython projeét In the future the base class shall provide interfaces fordlasses:
one holding atomic models and one, yet not released, clabglding electron densities of
medium resolution (e. g. from electron microscopy or cijatgaphic densities of large
protein complexes).

3 Modelling Strategy

The programs CRYSOL & CRYSONserve as plugins for calculating theoretical scatter-
ing curves,I(q), for X-rays and neutrons, respectively. In addition userscalculate the
distance distribution function?(r) s 2. For both cases/(q) & P(r), a quality factor
(x?) can be calculated. To fit atomic 3D models to the experimelata, a grid search
procedure will screen the parameter space given by rota#od translations for each in-
dependent body. The user is asked to specify geometridedirets and movement limits
in advance. The software provides options for defining todibitrarily. It is possible to
limit the number of atoms used for calculating thé-), while a smoothP(r) is warranted.
Additional scripting capabilities are provided by usingdifeatures of YASARA

4 The Monte Carlo Algorithm

In order to find reasonable limits to start a systematic patanscreen (see 3) the soft-
ware provides the option to perform a Monte Carlo based belaeforehand (compare
figure 1). Provided with SAS data an initial quality factg®, is calculated and move-
ments for all individual chains are picked at random. To gaieed the radius of gyration
(Rg) for the new model is calculated. A model is immediately cegd, if theR,, falls out
of a level of tolerance. Subsequently a ngtwis calculated for the new model which is
kept ((Few < Xirevious) OF rejected (2., > Xi.evions)- IN Order to prevent falling into
a local false minimum, the algorithm might accept a “bad” mavith the propability
Xgrevious*Xﬁcw
eV Xbetore cooting Xt efore cooling 1S the discrepancy between model and experiment be-
fore “cooling down”: The entire system will adjust its own wamnent limits and search
increments, if a certain number of successful steps waseeac

5 Download & Patrticipation

The project homepage can be foundchétp://sas-rigid.origo.ethz.ch . At
the time of writing it offers access to the source code andid@mntation. As Python is an
operating system independent language, installing Pyfhavw.python.org) along with
some freely available modules (see the documentation imaldad) is sufficient to get
started. — The project is an open source community projeay. kind of participation is
welcome.
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Here we report on the development of a strategy for proteitep docking using an all-atom
refinement protocol based our free-energy on-atom protmicefield PFF02. We use a set
of protein complex conformations generated by a heuristthod (ZDOCK) and score the
proposed conformations using short refinement simulatiortie all-atom forcefield, which
predicts the experimental conformation of 1PPE (complekavine beta-trypsin and CMTI-
1) and 1KAC (complex of knob domain from adenovirus serot§geand its cellular receptor
CAR) to within 0.5 A.suchan approach is much faster than a generation of they et in a
full simulation of the protein-complex dynamics.

1 Introduction

Many proteins are able to fulfill their biological functiomly in complex with other pro-
teins. One of the most important examples for this are Gematoupled receptors (GPCR)
which bind about 40% of all known drugs. For this reason thegljation of protein-protein
complexes is an important area of applications of biomdécsimulation. Free-energy
based methods, such as POEM@HOME are particularly weidtitaddress these ques-
tions, but all-atom simulations that perform an unbiaseatde of all possible complex
conformations are very time consuming and may not, withisesonable time frame, even
visit the experimentally relevant conformation once. Olieraate approach to this prob-
lem is the generation of a decoy set, or conformational fgwith a relatively inexpensive
heuristic method and then to score to the members of thisydsstdn the all-atom force-
field. Because models generated by one program are geneadltyivially transferable
to another, each of these decoys must be subjected to a stadation simulation. Here
we investigate such a protocol, where decoys for 1PPE andCliére generated with
ZDOCK, which were subsequently relaxed using POEM@HOME.

2 Method

The simulations were performed with the POER{Protein Optimization by Energy Min-
imisation) simulation package using the all-atom proteircéfield PFF022, which iden-

tifies the native structure of protein/protein-complexet@ global minimum of the force-
field. The scoring approach to protein-protein docking nexgutwo principal components
(i) a fast and effective method for generating possiblertagons of monomers and (i)
an accurate energy function to discriminate native andmettive conformations. We used
Zdock for generating the decoys set of possible conformations.eéoy set is a large
library of protein conformations generated to approxiryas@an all relevant low energy
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regions of the free energy landscape. To measure the pxétgtiand selectivity of a force-
field, the conformations in the library (decoy set) must brkeal according to their energy.
If near native conformations emerge lowest in the free-ggnfemction, the force field dif-
ferentiates between native and near-native conformatiémghe limit of completeness
of the decoy set, which is rarely reached in practice, ttss done is sufficient to show
that the force field stabilizes the native conformation @f fnotein against all competing
metastable conformations and corresponds to the globiahopt of the free-energy force
field.* For decoy sets generated with unbiased methods, the cotioputé the Z-score
(the difference between energies of near-native decoygtmean energy of the decoy set
in units of its standard deviation) gives a quantitative suea of the selectivity of the force
field. Zdock is an initial-stage docking programme. It uses=&T-based grid search to
scan for optimal translational conformations. To complat@@ock another server Rdotk
is used to perform the refinement of the initial-stage pitaatis.

3 Results

The goal of this study was to identify a suitable protocol émerate the best conforma-
tions of the complex. As a start we focused on rigid proteinkityg, where individual
monomers do not change conformation on binding. In orderteesat a meaningful com-

Figure 1. Docking of 1PPE to a RMSD 6f5 A.

parison of the energies we relaxed approximately 1000 defmoy?2 proteins in the decoy
library in PFFO2. This procedure maps each decoy to a locaihmim of the force field

of similar structure, the average change in RMSD betweersténting and relaxed con-
formation was less than02 A, i.e. the decoys are not changed in the relaxation process.
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Figure 2. Results for 1PPE (left) and 1KAC (right). Free gerersus bRMSD of all accepted conformations
in the simulation (25000 steps, maximum translation shaftppove 0.5A, maximum rotational shift 0.05 rad).

Using this protocol, both proteins 1PPE (Fig. 1) and 1KACvslvery good results be-
tween the native structure and the best decoys. The bRM@&Rygplot of all accepted
conformations during the simulation (Fig. 2) demonstréies the simulation explores a
wide variety of conformations, with regard to their freezggy and their deviation from
the native conformation. The best protocol results in 256@ps, where we have also
included rigid body translational and rotational movegéat the aggregates. The transla-
tional moves are sampled from an equidistributed intenitd maximum change of 0.,
whereas the rotational moves are sampled from an equimigd interval with maximum
change of 0.05 Rad.
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Unbiased parallel tempering Monte Carlo simulations of ardfldue protein starting from
random conformations, reveal a non-trivial path followsdtie molecule to the native state.
The molecule (PDB id: 2GJH) consists of arhelix and a 3 stranded-sheet, in which two of
the adjacent strands straddle the other secondary seeugiements along the sequence. In the
course of folding, one of the strands making sequence nmai-tmntacts is seen to be "cached”
as a non-native extension of the nativenelix. After the other secondary structure elements
have formed and assembled in their proper tertiary arrargérthe cached segment is released
and it changes its secondary structure to a strand as ihado as-hairpin to complete the
native structure. The study is based on a physics basedcitptater all-atom interaction
potential called the Lund force field.

1 Introduction

While many protein structures contailisheets with complex arrangement@strands,
the folding mechanisms giving rise to such structures agelg unclear. Most successful
folding simulations to date have been witkhelical proteins, which are dominated by se-
guence local interactions. The hydrogen bonds are formbudelea residues andi + 4
along the sequence, which, even for the most stretched ofbreoation of the chain, are
in the spatial neighbourhood of each other. Local inteoastiquickly lead such proteins
into their folded structures. Whilg-sheets consisting of one or more sequence adjacent
(B-hairpins require somewhat longer range contacts alongateence, they are still local
structures. Typically they arise through a zipper-like hreadsm starting from the turn re-
gions and sequentially forming hydrogen bonds away frontihes. An important feature
of these sequence local structures is that they do not @nevfith the formation of other
similar structures elsewhere along the chain.

When two neighbouring strands indasheet come from regions of the sequence sep-
arated by a large number of residues, formation of contaetiwd®en them is no longer
independent of the structure of the intervening segmenemBture formation of such
contacts creates large steric barriers and can hinder gdpepfolding of other secondary
structure elements. The proteinis then lead into a deepriticanum and can only fold by
first breaking the prematurely formed long distance nathantacts. Such considerations
suggest that proteins with compléxsheets should on average fold slower thahelices.
This is indeed consistent with experimental observatidr®e so called “contact order”,
the average sequence separation of residues in contac abstaiking correlation with the
folding rate over a huge range of folding ratgssheets with complex strand arrangements
have high contact orders, and are seen to fold slowly. Biifgessible that some proteins
with relatively high contact order might have evolved tsdk avoid the deep local minima
and fold much faster than others of the same complexitya Blfahe folding rates versus
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Figure 1. Comparison of the global energy minimum (colouithuihe PDB structure 2GJH.pdb (grey).

contact orders suggest such a possibility, as there is a fluctuation in the folding rates
for proteins with intermediate contact orders. The exatineaof such fold accelerating
mechanisms are unknown. From all-atom Monte Carlo sinaratof a 49 residue protein,
Top7-CFR (PDB id: 2GJH, residues 2 —50) with both helical &rgheet structures and a
non-trivial 3-sheet geometry, we propose one possible mechanism.

2 Methods

Our model represents all atoms of the protein chains, imetuall hydrogen atoms, but an
implicit treatment of the solvent molecules through anetffe interaction potential. The
model assumes constant bond lengths, bond angles andgséptidl torsion angles of 180
degrees. Each protein molecule has only the Ramachandc&hdrze torsion angles and
the side chain torsion angles as its degrees of freedom. fidatiee force field contains
terms to account for excluded volume repulsion, local baokbtelectrostatics, hydrogen
bonds and hydrophobic interactions. The model and the fioeteb have been described
in detail elsewhere?, where we also show that the force field describes the foldirdy
thermodynamics of a range of short peptides with hethelical and3-sheet structures.
Sampling of protein conformations is carried out usingicgpéxchange Monte Carlo tech-
nigues with 32 replicas. For this work, we have used the prdtéding software package
PROFAS?, version 1.1.2. The results presented here are baseédion10'° elementary
Monte Carlo updates of the protein chain per replica. Allidations were initialised with
random values for all degrees of freedom and different rendomber seeds.

3 Results

The simulated molecule folds to the native state with a banklRMSD (all residues) of
about 1.8A. The global energy minimum found in the simulations hasekbane RMSD
of 1.7A, and is shown superimposed on the PDB structure in Fig.is mmimum energy
structure shares all the hydrogen bonds apd@ntacts with the native state.

More interesting than the fact that the molecule folds isohgerved manner of forma-
tion of 3-sheet contacts between the N-terminal strand and then@irtak hairpirf. When
the molecule folds from random conformations, the firstctrites to emerge are the na-
tive helix and the C-terminal hairpin. These are strongcstnal elements consisting of
sequence local contacts and fold to the same structuresme@segments in simulations.
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Figure 2. The folding events follow a systematic patterm iadicate that folding is facilitated by the chameleon
behaviour of the N-terminal segment.

But we observe that the N-terminal strand initially foldsply as a continuation of the
native helix.g-strands are stabilised by inter-strand interactionsréfioee, initially when
the C-terminal hairpin is absent, the N-terminal regionsdoet have any stabilising in-
teractions as @-strand. The helix, which forms first, provides a good tertgpfar the
N-terminal strands, and absorbs them. The helix, even wsthan-native extension, is
a structure that folds and unfolds easily. Thhairpin forms independently, and subse-
qguently makes hydrophobic contacts with the helix. Uponftmeation of hydrophobic
contacts between the helix and the hairpin, both the strestare stabilised. The non-
native extension of the helix, containing the N-terminaastl residues, does not benefit
from the hydrophobic contacts with the hairpin and evemyuaifolds. Unlike the situa-
tion for an entirely unfolded molecule, when the N-termiregidues are freed with both
the helix and hairpin in place, they do have othestrands to bind to, which turns out to
be lower in energy. Hence, the N-terminal strands join ihvaitarger probability.

4 Conclusions

Using all-atom Monte Carlo simulations starting from randimitial conformations, we
find that the molecule Top7-CFr folds to within 14 of its native state, following a
non-trivial folding pathway. The observed mechanism ofrfation of sequence non-local
(-sheet contacts depends on the chameleon behaviour oftiyefihal strand. We believe
that such caching gf-strands in neighbouring helices is one mechanism for acatihg
the formation of compleg-sheet structures. More detailed results are publishedis. R,
5.
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A peptide with 42 amino acid residues §fLl—42)) plays a key role in the pathogenesis of the
Alzheimer’s disease. It is highly prone to self aggregatieading to the formation of fib-
rils which are deposited in so-called amyloid plaques inliten of affected individuals. In
our study we established a method to analyze the aggredatioavior of the amyloigs pep-
tide with a combination of sedimentation velocity centgiftion and enhanced data evaluation
software as implemented in the software package Ultradeaportant information which be-
comes accessible by this methodology is the s-value disimib and concomitantly also the
shape-distribution of the peptide aggregates generatéetiprocess of self-association. These
informations get especially valuable upon evaluating theperties of potential aggregation
inhibitors. With this method we characterized the aggiegamodifying effect of a small or-
ganic molecule, designed agjassheet breaker. This compound is built from three headito-t
connected aminopyrazole moieties and represents a degidthe already described Tripyra-
zole. The compound showed reduction of aggregate formateasured by FCS and decreased
amyloid formation as measured by Thioflavin T measuremédysaddition of this compound
to a solution of the 8(1-42) peptide the maximum of the s-value distribution aialed for
the formed amyloid3 aggregates experienced a clear shift to smaller s-valuesmapared to
solutions where only the vehicle DMSO was added. This sbifirhaller s-values was stable
for at least 5 days. It could be shown that the strength of liifewsas related to the amount of
the added compound. The results will be discussed in terrteofsignificance regarding the
mechanism by which the compound interferes with the fibrifrfation of the A3 peptide.

1 Introduction

Protein misfolding diseases pose a major health probleromgtbecause of their increas-
ing incidence but especially because they still have to garded as incurable One

of the major targets for therapy under study are the formetepr aggregates themself,
whether by enhancing their clearance or the inhibition efrtformation. In the case of
Alzheimer’s disease the misfolded component is a proteigrfrent generated by prote-
olytic cleavage of the amyloid precursor protein and cdssist of 39 to 43 amino acids.
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Figure 1. Raw data (yellow, blue) obtained from
sedimentation velocity centrifugation of 21M
AB-42/A3-42-0G at 20,000 rpm, 28 in 10 mM
sodium-phosphate buffer, pH 7.4, 4 % DMSO. Fit-
ted data from 2D-SA are overlaid in red. Prior to
centrifugation samples were incubated slightly ag-
itated at room temperature for 5 d. The effect of O,
50, 150 and 20@M compound (top to bottom) on
aggregate formation is shown.
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Figure 2. G(S)-distributions obtained by Van-
Holde-Weischet Analysis. Yellow: 2LM Aj-
42/A3-OG after 5 d incubation at room tempera-
ture without compound, with 5@M (blue), with
150uM (green) and with 20@M compound (red).

Absorbance at 494 nm

The most prominent peptide is thesl-42). It is highly prone to self-association leading
to different kinds of aggregates from which the mature amfitoril was long thought to

be solely responsible for the neurodegenerative procassaisserved during the course of
the disease Our objectives are the development of aggregation intribiand the char-
acterization of their propertida vitro. In previous years increasing evidence arose that
probably smaller oligomeric assembfidsplay a more decisive role as neurotoxic agents
than the mature fibril. Information about size and shape @®paptide assemblies formed
during aggregation is therefore of high relevance.

Analytical ultracentrifugation is an absolute method fetrieving structural informa-
tion about macromolecules by direct observation of thedlrbgynamic properties in a
centrifugal field. Advanced data analysis permits the deiteation of s-value, molecu-
lar weight and shape distributions for multicomponenteyet. In contrast to methods
guantifying only the amyloid content of a sample, as f. eoflavin T or Congo Red based
fluorescence measurements, it will be possible to deteatgliegate species presentin so-
lution, from monomers to multimers consisting of severalibands units. On this account
we believe that the methbds especially helpful in determining the effects of potehti
aggregation modulators. Here we present the results foadl snganic compound, which
is a derivative of the previously describgesheet binder molecules consisting of aminopy-
razole building blocks
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Figure 3. Results from 2-dimensional spectrum analysisedfrsentation velocity data in 3D representation.
Left: 21uM A8 42/A3 42-OG in 10 mM NaP pH 7.4, 4% DMSO as control. Right: 2M A3 42/A3 42-0G
in 10 mM NaR, pH 7.4, 4% DMSO with 200M compound after 5 d incubation at RT (20,000 rpm Y.
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2 Methods

The aggregation mixture contained 178 unlabeled and 3.5M Oregon Green-labeled
AS (1-42) in 10 mM sodium phosphate buffer, pH 7.4 with 4 % final ®B® concentra-
tion. DMSO was needed in order to solubilize the inhibitompmund (KH61). Samples
(300l volume) were incubated slightly agitated at RT for 5 d ptmsedimentation ve-
locity centrifugation. Sedimentation velocity experingewere performed with an XL-A
analytical ultracentrifuge (Beckman-Coulter), equippéth absorption optics. Samples
were measured in standard double-sector aluminum cel @D rpm, 20C. Radial step
size was set to 0.002 cm. Scans were recorded at minimal titeevals. To increase the
sensitivity and the number of processable samples per tansity instead of absorption
data were recorded in continuous mode. Detection wavéiemgs 493 nm.

The raw data were transformed to pseudo-absorbance datgssed and evaluated
using the UltraScan software pack&genning on a 44 node AMD Opteron cluster under
Linux. Thew value for the A3 (1-42) as determined from the primary sequence is 0.7377
g/cm?, the solvent density = 0.9998 cm?/g and viscosity; = 1.0004 centipoise. The 2-
dimensional spectrum analysis (2D-SA) solves the inversilpm of fitting sedimentation
velocity data to a linear combination of finite element siolu$ of the Lamm equation.
Each term of the linear combination reflects a solute in tidé@ensional space overand
1/ fo. Finally Monte-Carlo (MC) simulations were used to idepsfatistically significant
solutes.

3 Results

A small organic compounds{600 Da) designed assheet binder was selected for further
studies, which proved to be capable of lowering the amyloidtent of A3 42 solutions
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as measured by a Thioflavin T fluorescence assay (data noh¥hdte comparative sed-
imentation velocity analysis (Fig. 1) ofA42 solutions incubated either with or without a
2 to 10fold molar excess (referring to the monomer concéatraf Aj5) of the compound
revealed a considerable shift of the determined s-valussn@ler values as seen in the
G(s) distributions determined by van-Holde-Weischetasial(Fig. 2). This indicated an
inhibited growth of aggregates caused by the added compomdnhdirect effect of the
compound by changing the solvent properties could be rulgdy control experiments
with a protein of known s-value in the presence or absenckeo€bmpound. The results
from 2D-SA/MC analysis (Fig. 4) showed the dependence ofwtbight averaged s-value
of A 42 aggregates on the applied compound concentration. Qdlyid@ is not a sin-
gle aggregate species which is stabilized by binding of trepound. More probably the
measured relationship indicates an end capping mecharfignowing protofilaments or
fibrils, leading to a reduced mean length of aggregates. Suchchanism would also be
expected by the design of the compound assheet binder. As can be seen in the 3D
plots (Fig. 3) the number of different species is clearlyusst by compound addition,
species with a frictional ratio of about 1.3 at s-values &® S are missing. Appropriate
models for the aggregates together with further experiaielata will be needed in order
to interpret the determined shape related frictional gatio
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In this paper we present the application of our recently kd@esl docking program
PSO@Autodock to screen a peptide library for the lethalofaof anthrax and to shed light
on the application of the underlying scoring function foptiée-protein docking.

1 Introduction

Communication in biological systems occurs via specificenolar interactions. Thus, de-
tailed knowledge of protein-ligand interactions mightgte gain insight into fundamental
events in the communication process of biological systehslecular docking methods
have proven to be viable tools for studying the binding geoieand affinities of ligands
to proteins. Current docking methods are designed for sargdibraries of low molecular
weight compounds. However, the majority of endogenoustigeare peptides. Though
the development of methods to dock highly flexible liganés peptides is evolving, the
development of appropriate scoring functions is laggirigje

We developed the molecular docking program PSO@Autotdek fast flexible
molecular docking. It is build upon AutoDock3 (AD3)where the docking procedure
is realized as multidimensional optimization. PSO@Autddemploys particle swarm
optimization (PSO) techniques to find the optimal protégashd complex. In PSO, the
locations, orientations and conformations of the ligandsrapresented as individual par-
ticles, which move through the search space similar to flagkiirds. ThevarCPSO-Is
algorithm of PSO@Autodock can efficiently screen high-disienal search spaces. In
this study we investigated the applicability of the undierdyscoring function of AD3 for
peptide-protein docking.

2 Data Preparation and Methods

For AD3 and PSO@Autodock, the protein-ligand complexesewprepared with
AutoDockTools: Kollman charges were assigned for the jmetand Gasteiger charges
for the ligand molecules. A grid box with a size of 90x90x90® with a spacing of
0.375A was defining around the co-crystallized ligand. For GOLBrgion 3.0, CCDC,
Cambridge UK), the molecules were prepared using the MOE 280(CCG Inc., Mon-
treal, Canada) and Amber89 charges were applied to thesysi@efault parameters were
used for AD3 and GOLD. For PSO@Autodock the cognitive andes@arameters were
set to 6.05. The dockings runs were stopped after 100,000atians for the initial com-
parison study and after 500,000 evaluations for the pejmidéein dockings.
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3 Flexible Peptide-Protein Docking Studies

We compared the performance of PSO@Autodock with the dggiingrams AD3 and
GOLD. Thus, we screened a set of 10 protein complex strustuith highly-flexible lig-
ands (15 to 24 torsional angles). PSO@Autodock clearlyartapms the other docking
programs. The average RMSD value of all the docked complisxesth 1.6A signifi-
cantly lower than that obtained with AD3 or GOLD, which is aba®.0A in both cases
(Table 1).

Complex | Torsions| PSO@Autodockl AutoDock3 | GOLD3
1HRN 15 0.77 1.62 8.69
1CZI 16 4.39 5.71 3.03
1PPM 17 1.50 3.69 10.08
2FMB 20 3.84 4.60 6.72
3APR 21 0.66 2.87 11.54
1QRP 22 1.28 4.34 4.35
1WKR 22 0.74 1.28 11.68
3FIV 22 0.79 3.17 5.54
1HIV 23 0.85 2.98 2.77
1LYB 24 1.12 2.99 5.66

Table 1. Comparison of different docking methods (RMSIﬁ\)n

Inspired by an experimental stutlwe applied PSO@Autodock to dock a peptide li-
brary to the anthrax lethal factor (L¥)LF is a zinc-dependent metalloproteinase secreted
from Bacillus anthracis that cleaves the members of the MARIgse (MKK) family of
intracellular signaling proteins. This action by LF rapidilocks the signals that would
normally recruit other immune cells to fight the infection.

Four X-ray crystal structures of LF in complex with small molile inhibitors and pep-
tides have been reportedFirst, we performed a cross-docking study in which all tida
are docked on the four crystal structures of LF to investigatether potential ligand in-
duced changes in the protein structure affect the accuratyealocking. Independent of
the protein structure used the native conformation of ti@nd is reproduced in all com-
plexes. The docking on the complex structure with the peftie20 (KKVYPYPMEPT)
1pww.pdi§ predicts the ligands in all cases correctly with an RMSI2 A (Fig. 1.a).
Thus, we selected this complex for further studies.

A random sequence has been introduced in to the peptideyliasaa negative control
as shown in Fig. 1.b. All peptides bind in the cavity regiomitr to the co-crystallized
ligand in 1pww.pdb. Although the random sequence binds tfeabinding pocket, its
affinity is predicted to be lower than the substrate sequentéis proves that the AD3
scoring function in PSO@Autodock can distinguish specifierf non-specific peptides.
However, it is difficult to differentiate between the bindistrength of similar peptides.
This is probably due to the limited accuracy of the AD3 sogrianctior?, which has a
residual error of 2.113 kcal/mol.
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X-ray structure

@ rsocnuodock

P6 P5 P4 P3 P2 P1 PI' P2 P3' PA' A,
RMSD 1.98 A

MKK-1 K K K P T P 1 Q@ L N 2416
MKk2  ROK PV L P A L T I 722
MKK3 R K K D L R I § C M 2123
The inset shows comparison of native MKk4 K R K A L K L N F A 2394
Xray crystal structure and docked M5 F K S T A R F T LN a8

peptide LF20(KKVYPYPMEPT)
MKké R N P G L K I P K E -1990
bor of Torc MKk7 P R P T L Q@ L P L A -1906
Number of Torsions : 38 MKK-8 P R H M L G L P s T -1917
Opfimzed R K K V Y P Y P M E 2005
Random | LV Y G L S T V A -1369

* in keal/mol

(a) (b)

Figure 1. (a) X-ray crystal structure of lethal factor (1pywdb) in complex with peptide LF20 (KKVYPYP-
MEPT) (b) Peptide Library.

4 Concluding Remarks

PSO@Autodock can be applied for flexible peptide-proteckida studies. However, the
scoring function currently implemented in PSO@Autodockusficient to discriminate
between good binders and non-binders to a protein, but motrate enough to predict the
binding affinity correctly. Thus a novel scoring functiorstta be developed. A promising
candidate for such a scoring function could follow the efspirapproach of RosettaDotk
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A well choreographed, dynamic interplay of protein-protigiteractions is crucial for the func-
tion of a cell. To understand these interactions, knowleafgbe underlying energy landscape
is essential. We analyzed the energy landscape of a protetain and an antibody-antigen
complex using steered molecular dynamics simulations.

First, we examined the influence of velocity and geometryhefforce probing on the choice
of the forced unbinding pathway of the Barnase-Barstar ¢exapWe demonstrated that in
our constant velocity probing experiments, a change in tiobipg velocity may switch the
unfolding pathway. Further more, we showed, that chandiegyeometry of the force probing
can be used to choose between different unbinding pathwalysse tools may be used for a
pre-chosen sampling of the protein complex energy landscap

The second part of our work focused on the examination of #yeddence of the unbind-
ing pathway on the force attachment point. The truncatectinewzipper GCN4 peptide was
separated from the anti-GCN4-antibody fragment H6 in SMDuations. Three different at-
tachment points were examined: the C and N termintaé of the 12 amino acid long peptide
as well as &', in the middle of the peptide. We identified a common barriett@nunbinding
pathway formed by a shared, central unbinding interaction.

Additionally, we classified the correlation between MD siations and AFM as well as SPR

measurements. We could show, that, in the examined syster\RM probes the first barrier

found in our MD simulations. Further more, our MD trajecésrishowed the existence of
two main unbinding barriers. This supports the theory, &faM and SPR may test different

barriers. The second barrier is tested adiabatically wiRiR $neasurements, while the inner
barrier is probed via AFM, due to the forced tilting of the mgyelandscape inherent to force
spectroscopy measurements.

1 Introduction

The multidimensional energy landscape of a biological makr complex is an intrinsic
property determining the dynamic function of the systentalt be described by barriers
and energy minima. The barriers are blocking access to odlgéwns of the energy land-
scape while the local minima define stable conformationhiefdomplex. A system in
thermodynamic equilibrium is preferentially in the glolsaihimum of the energy profile.
Disturbing the system enables sampling of the energy lap#sé 11 According to the
Bell-Evans modélthe energy landscape can be tilted by applying forces. Thwerethe
system is able to move over lower barriers to different regiof the energy profile. Here,
we examined at the example of the Barnase-Bargtaomple>® how the energy landscape

80ne complex of the PDB structure 1BRS was used.
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of a protein-protein complex can be more thoroughly exmlorghis is accomplished by
using different force attachment points and different mglvelocitie$. To access larger
regions of the energy landscape belonging to an antibodynfest complexed with its
peptide antigen, dynamic force spectroscopy was perfornyeSteered Molecular Dy-
namics (SMD) simulations as well as Atomic Force Microsc¢pi#M). To sample the
equilibrium states, Surface Plasmon Resonance (SPR) wd us

2 Barnase Barstar Complex

2.1 Stability vs. Lability

In this experiment, we simulated the force application ialagy to AFM experiments,
attaching the probing forces at singlg,-atom$ 1°. Barstar was pulled at the la&t, of
its C-terminal secondary structure element and Barnasdiwe at the firstC, ipha of
its N-terminal secondary structure element and vice versa. velocity of force probing
way changed from fas(Z to slow (0.57) pulling in these experiments, investigating the
difference between probing the lability and stability o tfystem. If solely the system’s
lability is tested, it lacks time to relax in the changing eyelandscape and follows the
pathway of the lowest barrier heights. In case of probing ¢imé stability of the system,
the time for relaxations is sufficient and the pathway is oheiieed only by the lowest
energy. Due to the non-adiabatic pulling, the system ladkficgent time to relax to the
state of minimum energy. Hence, not only the well depth, e ¢he barrier height is
determining the pathway. The influence of barrier heightsireg well depth increases
with probing velocity.

2.2 Dependence on the Force Attachment Point

The differences in the anti parallel probing of the BarnBsestar complex lead to an ex-
tended exploration of the importance of the attachmenttpritthe choice of the unbinding
pathway. Here, typical COM measurements resulted in théndiriyg of the complex only
after Barstar’s binding helix was separated from its protgire. Furthermore, we show,
that a direct probing of the binding interface leads to aditebinding of the complex
along two distinguishable pathways.

3 Antibody Antigen Interaction

To increase the understanding of antigen-antibody intienas; we explored the energy
landscape of the antibody fragment H6 to its antigen GCN4.qicine zipper. Dynamic
force spectroscopy experiments were conducted using ARMBAMD simulations to gain
access to different velocity regimes. The equilibrium wmaling was determined via SPR.
Probing different force attachment points on the peptide sivowed, that the unbinding
under force depends on the direction of pulling, while adtebmeasurements only re-
vealed one unbinding pathway.

The first SMD barrier rupture lengths agree with the poténtidths measured by
AFM. The second SMD barrier might resemble the barrier pddineSPR. These results

342



suggest that the system is dominated by a two barrier unignaith a lower inner barrier
and a higher outer barrier. AFM probes the inner barrier dube applied forces tilting
the energy landscape, while SPR adiabatically probes gtehouter barrier.

Different Velocities of Force Probing  Choice of the Force Attachment Point

| \ F
h C/ ful ) )
'('f'aast)”"",/ et O ¢
\
£200
Q\J

Figure 1. The exploration of the energy landscape with dyadorce spectroscopy depends not only on the
choice of the attachment point of the forces, but also on ¢facity of force probing. By choosing the attachment
point and the probing velocity, the exploration of the egdamdscape of a complex can be preferentially guided
to certain regions.

Translational
Displacement

Change of
Conformation

final states final states

4 Conclusion

The applied forces alter the energy landscape in a noratsay. The resulting propaga-
tion of the probed complexes through phase space does notutitally depend on the

geometry of force application, but equally on the velocityfarce application. Increas-
ing the pulling velocity diminishes the time for the systemré¢lax in the current energy
landscape. The different attachment points of the forcknaulter the distribution of the

tension in the complex. This results in probing differerdgerties of the highly complex
biological systems. Therefore, for a thorough characiion of the effect of force on

a protein complex, multiple simulations with different piog geometries and different
velocities need to be performed.
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Intracellular metabolic flux rates are the manifestatiometabolic activities within organisms.
Aiming at a precise quantification of tlire-vivo fluxes, Metabolic Flux Analysis based on label-
ing experiments has become an valuable key technology ite®gsBiology. Topology-based
computational algorithms are derived to facilitate infative high-throughput analyses as well
as predictive computational modeling and simulation apgines to generate new knowledge
and a robust experimental design of labeling experiments.

1 Introduction

Intracellular metabolic flux rates are the most importadtdators of the metabolic activ-
ities in organisms. Depending on external conditions,fiimeomedetermines the cells’
physiological phenotype and, thus, their metabolic cdjpi@si. Thein-vivoreaction rates,
however, cannot be directly accessed from measuremenisingiat a precise quantifi-
cation, Metabolic Flux Analysis (MFA) based on Isotope UaieExperiments (ILE) be-
came an invaluable tool for Systems Biology.

2 General Procedure: Isotope Labeling Experiments

Over the past decade two types of isotope-based MFA emergkaira being successively
refined. Both methods rely on measurements of either laletedass components (with
GC-MS, NMR) or labeled primary intermediates (LC-MS). Thessical, well established
stationaryisotope MFA characterizes a cell's fluxome in a metaboliciantbpic station-
ary state. Typically, in a continuous culture the feed isteing@d from naturally labeled to
isotopically labeled medium which propagates though thevoik and progressively re-
places the unlabeled intermediates. When the labelinglilision is approximately time-
invariant, samples are taken. In this field, recent expertaig@rogress strengthened the
development of high-throughput MEAthe investigation of extensive metabolic networks
as well as the utilization of elaborated nonlinear statitinethods for flux estimatién

A current area of research is isotopicatipn-stationaryMFA which represents a
promising generalization of the classical apprdattere, the cells are likewise kept under
metabolic steady state conditions, however, now the tinoéles of the labeling patterns
are measured upon start of the labeling period in order tateahe time-dissolved label-
ing propagation of the isotopic tracer though the networkm@ared to classical isotope
MFA, non-stationary ILEs are typically more informativedafacilitate a cross check be-
tween metabolome and fluxome data. In particular for comgsire networks, however,
the required computational effort is prohibitiveAltogether, the new experimental tech-
nigues result in an increased demand for more efficient éihgos.
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3 Modeling and Computational Machinery

Besides the measurement of labeling patterns in key metedoéxtracellular rates, and
pool sizes (non-stationary case only), a biochemical ractetwork has to be provided.
Additionally, atom transitions of all reactions have to lpeafied which essentially de-
scribe how the flow of labeled material through the cell'sabelic pathways is organized.

The analytic determination of the fluxes as a function of therging labeling patterns,
however, is impossible for realistic networks. Thus, foraueling intracellular fluxes, an
iterative parameter fitting procedure has to be applied. rBarizing, mathematical mod-
eling and computational algorithms build the foundationisaftope-based MFA. In this
context, the computational bottleneck is the forward satiah step, i.e. the calculation of
emerging labeling patterns from given parameters. Becallipessible labeling combina-
tions of each metabolite have to be considered, at the eadgtiation procedure involves
the solution of large, cascaded systems of Labeling BalEqcetions (LBES)®.

The requirement for the computational evaluation of the ehdglin each case high:
system dimensions range from 700 with 45 parameters (¢em&tabolism, CM) and 5600
with 65 parameters (CM with biosynthesis pathways) up to.@3% with 580 parameters
for genome-scale models. The classical method involvesdhgion of an algebraic equa-
tion system while for the non-stationary method a systenmaihary differential equations,
with possibly stiff characteristic, has to be solved.

4 Topological Technigues for Dimension Reduction

Efficient non-standard solution algorithms basically alyron the structure of the Isotope
Labeling Network (ILN) graph associated with the metabaktwork. Although the so-
lution algorithms for the stationary and non-stationargraaches are quite different, both
approaches certainly benefit from a reduction of the prolda®. Dimension reduction
is performed by a careful analysis of the ILN graph followgdebremoval of specified
nodes and edges or a decomposition into smaller subsysfEmestwo basic approaches
for dimension reduction are:

Path Tracing. Typically, measurement data describe only a small subsetetdbolites.
The forward simulation step can be restricted to a relevalnireetwork which sufficiently
describes the transport of labeling from the substratesdgarteasured metabolifesThe
necessary path tracing procedure relies on the compufattitne transitive closure of the
network graphs and is performed in two directionsferavard tracing which determines
the fate of the isotopic labeling found in the substrated,alpackward tracingwvhich de-
termines the topological predecessors of a labeling pattefragment.

Network Graph Decomposition. In a divide-and-conquer approach the network graphs
are decomposed inttisconnectedunilaterally connectedagyclic) andcyclic subnetwork
components (so called CCs, DAGs, and SCCs, respectively. decomposition heavily
uses the unidirectionality of reactions. Once labelingésaa cyclically connected subnet-
work (by taking an unidirectional reaction route), it is iogsible for it to return. This es-
sential information can be used for decomposition of a ngtwido smaller subnetworks.
The decomposition results in subproblems with lower dirr@mand, thus, dramatically
reduces the running time of the solution algoritRmBepending on the network connec-
tivity the speed-up is at least in the order of two to three mitages.
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Although the potential of these two methods is high, furtieeluction is possible using
an even more fine-grained approach: due to their combimtorigin, the ILNs contain
isomorphic subgraphs in form of parallel paths. Since theegeged LBES are likewise iso-
morphic, this property results in redundant computatioh&iwvare usually hard to elim-
inate. Fortunately, this problem is solved by the genenatioanalytical solutions which
facilitate the elimination of common subexpressions. Ag-gitoduct analytical solutions
enable exact evaluation of sensitivities and the generafibighly efficient machine code.

In case of non-stationary ILEs, typically with growing ldlegchange between neigh-
boring metabolites the differential equation systems tenide stiff. Application of e.g.
a s-stage implicit Runge-Kutta scheme involves/s x sN-dimensional linear equation
system, wheréV denotes the number of differential equations to be solvedinposing
specialized structures on the Runge-Kutta matrix, e.g.nmpsing a SDIRK scheme, the
computational cost for its solution can be reduced. Howeliercomplexity of performing
at least one Newton step remains. Clearly, both topologipproaches presented above
can be directly applied. Moreover, because the spargitpattern of the Runge-Kutta ma-
trix remains the same for all time steps, the network decaitipo has to be performed
only once.

5 Conclusion and Outlook

The computational routines used in stationary, and in @aer non-stationary isotopic
MFA suffer from the inherent computational complexity oéthpproach. However, ex-
ploiting the nature of the underlying (algebraic and diéfaial) equation systems improves
the efficiency of the solution methods. A careful study of lddgeling network topology
leads to a significant increase in performance. New algostamerge, having their roots
in Graph Theory, Linear Algebra, and Compiler Theory. Hogreparticularly for the clas-
sical approach the new techniques providing analyticalfastdnumerical solutions open
the perspective to simulate even genome-scale metabotielsio
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Collagen is an important protein, that has an interesticgrsgary and tertiary structure. Three
protein strands wind around each other, conserving theecondary structure. Here we explore
theoretically the experimentally known thermodynamicpanties of amino acid triplets on the

triple helix structure. Gibbs free energy values are in detepaccordance with experiments.
Sarcosine (N-methyl glycine) also seems to stabilize ipeethelix.

1 Introduction

Collagen is an important extracellular protein, it prowa@e quarter of the proteins in our
body. Tropocollagen is the well-known triple helix formegthree protein chains wound
around each othér.In each chain, glycine must be in every third place, and tidmees
are displaced with one residue in each cHa@ollagen chains contain amino acid residues
only in one conformation, which is characterized by the diaé anglesp = —70°,

Y = 150°, and is sometimes called,.! Interestingly, the X-ray structure of polyglycine-II
has the amino acids in the same conformation. Accordingtpravious results the most
stable conformation for the glycine amino acids — whereyeaearnide bond is having two
hydrogen bonds with two neighboring amide bonds — isapisFor amino acids having an
alkyl side chain, thes-pleated sheet is the most stable conformafiditis is the building
block of amyloid, and of other plaques also, that are knowsatese conformation diseases
and so dementid.Furthermore, it has been discovered recently that seveotgips are
able to form such plaques (e.g. myoglobin), after some enwiiental treatmerft.There-
fore plaque formation seems to be the inherent nature oém®t As a consequence, to
prevent its every protein turn into@pleated sheet plaque, nature uses several strategies.
For collagen, this strategy might be the conservation ofteatcssecondary structure (the

EL).

2 Methods

18 (3*6) residue containing collagen and triple strandquleated sheet models were cre-
ated as described bef8reFor all calculations the Gaussian®sbftware was used. The
structures were optimized with the “tight” criteria and safuent frequency calculations
were carried out, both at the B3LYP/6-31G(d) level of theoRrequency calculations
allow us to obtain entropy and Gibbs free energy data. Theasatiscussed here contain
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(i) only glycine amino acids (called GGG),
(i) glycine and alanine (called AAG),
(i) glycine and sarcosine (N-methyl glycine) (called $&3,
(iv) glycine and proline (called PPG),
(v) glycine and proline and hydroxyproline (called POG).

The reference values of the enthalpy and Gibbs free enemgyytseare the sums of the
enthalpies (Gibbs free energies) of the three individuatipe strands, 6 residues long
each.

3 Results

Enthalpy and Gibbs free energy values of the triple heliolhgen mimicking structure
and the triple stranded-pleated sheet for each amino acid composition can be seen on
Table 1.

AH (kcal/mol) AG (kcal/mol)
triple helix  -pleated sheet triple helix  3-pleated sheet
GGG -30.9 -68.5 27.2 -16.4
AAG -29.0 -70.1 19.5 -29.3
SaSaG| -60.7 -44.3 -15.9 -2.9
PPG -40.6 -9.9 0.3 21.8
POG -40.6 -15.7 -1.3 13.1

Table 1. Enthalpies and Gibbs free energies of the tripliedlednds-pleated sheet models.

For the GGG and AAG models, the sheet is the most stable steicthe Gibbs free
energy of the triple helices are much higher than that of #ia bheet and also than that of
the individual strands. Regarding the enthalpy valuedriple helices are more stable than
the individual strands, however, thiepleated sheet is much more stable. Experimental
result§ show that these triplets indeed destabilize the triplexh&or the SaSaG, PPG and
POG triplet containing models both the enthalpy and Gibbe &nergy results indicate
the stability of the triple helix over thg-pleated sheet. However, a very interesting result
can be seen: for the PPG and POG maodels the triple helix, &eemgh it is more stable
than theS-pleated sheet, has the same amount of energy as the ingiwttands. On
the contrary, the SaSaG triple helical model is quite stalitle respect to the individual
strands. Unfortunately there are no experimental resoitshe SaSaG triplet in a triple
helix, however it is shown that PPG and POG stabilizes thiageh.

4 Conclusions

In concordance with experimental results we can say thataloulations have also shown
that the GGG and AAG triplets destabilize and the PPG and P@&ts stabilize the

350



collagen triple helix. For our great surprise sarcosinbikz&s the triple helix in a much
greater extent than proline and hydroxyproline. Therefopessible strategy for collagen

to “prevent itself* from plaque formation is to eliminateettwo NH amide hydrogen per
three amino acids that are not included in internal hydrelgemd formation. This can be
done simply by applying a methyl group instead of the hydmd@aSaG). Indeed, here the
triple helix is more stable than th&pleated sheet, in a much larger extent than in the case
of PPG and POG. It is very interesting, as the triple helibititing effect of the proline
and hydroxyproline is known for a long time. An other inteéir@g point is that these Gibbs
free energy results are in complete accordance with expetehstability data, contrary to
the simple energy difference resélts
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Thiocyanate hydrolase (SCNase, pdb code 2DD5) is a novelloesizyme containing non-
corrinoid Co't in the active site. Despite identical structure of the acites, high sequence
and structural similarity of SCNase and nitrile hydrata@édases) both enzymes catalyse dif-
ferent reactions. The SCNase enzyme catalyses the dagradétthiocyanate to carbonyl
sulfide and ammonia but related NHases the hydration ofestto amides. The main goal of
the present work was to explain these different propertiethe molecular level. Extensive
molecular dynamics simulations (up to 10 ns) were perforomdg CHARMM27 forcefield
with specially designed parametrization of the active. dRarticular attention was devoted to
water dynamics in the catalytic region, dynamical propsrtf the entry channel and preferen-
tial docking sites for a substrate and products of SCNase. tigéoretical modelling provides
useful data for understanding this enzyme having progedésired in biotechnology.

1 Introduction

Thiocyanate hydrolase (SCNase) Tiobacillus thioparusTHI115 is a microbial met-
aloenzyme with non-corrinoid CO metal ion in the non-standard active $ite SCNase
catalyses degradation of the thiocyanate to carbonyl gufiti ammonia (SCN+ 2H,O
—> COS + NH; + OH)L.

SCNase is composed of three subunit§15 kDa), 3 (18 kDa) andy (28 kDa).
In v subunit it have non-standard active site composed of fosidues: vCys128,
~Cys131,ySerl32,/Cys133. TheyCysl131 andyCys133 residues were found to be post-
translationally oxidized to cysteine-sulfinic acid Cys$O(CSD) and cysteine-sulfenic
acid CysSOH (CSO). The sequence analysis showed high siynileith quite exten-
sively studied nitrile hydratases, especially betweerhain from SCNase and chain
from NHase. Crystallographic data show that the fold is into NHase and structures
of the active sites are almost identical in these two enzym#ain differences in the
structure of active sites is that in NHaseCdon is six-coordinated and in SCNase it is
five-coordinated. The first five ligands are identical in bodises but in NHases the sixth
coordination place it is occupied by a water molecule or artwyide ion. In SCNase the
sixth coordination place is empty

Although the structure of the SCNase is known, the struadoes not contain either
substrate nor products of reaction. So far only in one paiber interactions of the sub-
strate and products with a mimetic center model were desdriKknowledge about these
interactions and dynamical properties of the SCNase cam @iswer about catalytical
mechanism not only in thiocyanate hydrolase but also in Has

In this paper, for the first time, we describe docking studiethe substrate and prod-
ucts inside SCNase, Newtonian molecular dynamics of thgreaand a variant of the MD
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method - Locally Enhanced Samplig (LES) simulations witk ofthe products (Nk) in-
side the protein matrix.

2 Methods

Docking was performed using the AutoDock 3.05 cbdéydrogens were added into pro-
tein (chains G H | from the pdb file) using NAMD 2.6 psfgen fbahd minimized in
NAMD 2.6. Ligands were optimised using Gaussian03 €oalith the HF method and
6-31G* basis set. From these calculations also chargesédmtaken. Using AutoDock-
Tools nonpolar hydrogens were merged and Gasteiger chadgiesl. 256 runs of genetic
algorithm (GALS) have been made for every ligand. The segrithcovered the whole
protein.

All molecular dynamics simulations for the enzyme were parfed using NAMD 2.6
code. For the protein alone 11.5 ns long Langevin simulatior300K with PBC have
been obtained (preceded by 100ps equilibration of water B®x 66 x 84A3, and 50 ps
of heating up to 300K). LESsimulations for the complex SCNase-ammonia were 5 ns
long, with 10 copies of the ligand.

All analysis was performed using the VMD 1.8.6 c@ad home made scripts.

3 Results and Discussion

Docking of the product (SCN) and substrates (COS and B)fshow that SCN and COS
can directly bind to the metal ion (distance Co-N A and Co-O 2.83 respectively).
In these two ligands many docks exhibit also coordinatiofiAog90 and3Arg91 located
above the modifiedCys131 and/Cys133 (3A). In the case of SCN only nitrogen atom
interacts with these arginines, but COS is stabilized bgraud and oxygen atoms. These
docks are similar to nitrile docks in NHase described in a@vipus papét Ammonia
does not exhibit direct coordination to the metal ion. Thetatice in the closest docks
between C&" and nitrogen is 4.6%.. The majority of docks "near” active site are very
close toyCys131,yCys133 and’Arg91. There also occur docks neghrgl36. We also
observe docks in the channel leading to the active site, detwArgl111 andsTrpl12.
Docks closest to the active site are shown in Figure 1.

11.5 ns simulations of the enzyme without any ligand showatlthe protein is stable.
Maximum value of the RMSD was 1A. Fluctuations correlate well with B factors. In
this type of the MD trajectory we focused on dynamical préipsrof water in the neigh-
bourhood of the active site. Analysis showed that on thedcst of 5A from Co** ion at
least 40 waters molecules can be found. The data were adlécm over 260000 counts.
On distance 3 only 10 water molecules have been found and about 4900 sodrite
shortening of the distance to 2&gives 7 water molecules and only 288 counts. This
indicates that the active site is accessible for water nubdse but highly hydrophilic cav-
ity causes that water molecules occupy space in some déstemmm the metal ion. Such
behaviour may suggest that in the catalytical mechanism-SEdbrdinates to the metal
ion and in this way it is activated for a water molecule attathis is in accordance with
docking results for the SCN

The purpose of the LES simulations was to find a channel lgatirthe cavity. Ten
non-interacting copies of the ammonia were located neadtglion. Two of them leaved
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Figure 1. Docking places in the closest neighbourhood othige site; SCN (a), COS (b) and ammonia (c).

the enzyme’s interior. Paths of these ammonia moleculesrenen in Figure 2a. The first
molecule (Figure 2a black and 2b) passed to solvent aften®.7This trajectory seems
to be not plausible because in the hetero-dodecameridwteuihis exit is closed by the
other hetero-trimer and looks like "ballistic” one in thetial part of the simulation (rare
artefact of the LES method). More probable is the trajecstrgwn in light grey (Figure
2a and 2c¢). In this case molecule leaved protein matrix &fens. Contacts with residues
in simulations are shown in Figure 2c. These two paths are glifferent than those in
NHase enzyme describes in our previous p&her

a b
C_ARG_147 C_ARG_147
C_SER_142 C_SER_142
C_ARG_138 S ) I—
R 133 C_TYR_134
< bsE 19 c cea133]]
- C_DSE 132
i c_pcs_131
C_AsPL109 C_ASP_109
C_SER_108 Csero8[ ]
B_TRP_112 C_THR_106
B_TYR_109 C_TRP_S52
B_TYR_108 BIRPM2[ ]
B_ASN_95 B_TYR_109
B GLN 94 B_TYR_108 [ ]
5 ARG 81 B_GLN_94
B_ARG_91 ]
¢ g ) —
» B_GLU_77 BGLU 7T ]
9 BICYS 70 Bovs76 ]
S BPHET3 B_PHE 73]
& B_THR_72 B_THR_72
0 2000 4000 6000 8000 0 2000 4000 6000 8000
Collisions Collisions

Figure 2. Trajectories of the two ammonia molecules (ajisiohs counts of these molecules less plausible (b)
and more plausible (c) in LES 10 simulations.
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4 Conclusions

Docking studies on product and substrate show that the hgfioal catalytic mechanism
relay on the binding of nitrogen atom from the SClkb Co** ion and such activated sub-
strate is attacked by a water molecule. MD simulations slnawa lot of water molecules
are present in range of A from the metal centre. This is another hint for such type of
the substrate activation. Through the LES simulation oftheyme ammonia complex we
obtained a realistic pathway of the product and indicatstltees building the channel to
the active site.
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Understanding the relationship between microscopic stra@nd macroscopic stability is im-
portant for developing strategies to improve protein $itston the reaction media used in indus-
trial processes.g, at high temperatures. Protein thermostability has begeatedly linked to
an enhanced structural rigidity of the folded state. Hereused constraint network analysis for
directly probing the rigidity of protein structures from sgphilic and thermophilic organisms
along a thermal unfolding trajectory. The approach alloi@ddentifying structural features
from which a destabilization of the structure originatesmighermal unfolding. These predic-
tions showed a good agreement with experiment. The infeomanight thus be exploited in
data-driven protein engineering by pointing to residues should be varied to obtain a protein
with higher thermostability.

1 Introduction

Stable proteins are important for broadening the industgplicability of enzymes.Nat-
urally occurring enzymes have usually not evolved to be&mitto the presence of organic
solvents, extremes of pH or high temperatures that mightimiccindustrial processes.
The identification or the development of enzymes with higtability will thus increase
the adoption of biocatalytic syntheses in industrial piitiin. Understanding the rela-
tionship between microscopic structure and macroscophilgy is essential for this. In
this context, computational approaches that allow for fifigng structural features from
which a destabilization of the structure originates shquti/ide valuable guidance.

Of all potentially destabilizing factors that might occarindustrial production, tem-
perature is the best studiédis an approach to understand the determinants of thermosta-
bility, proteins from thermophilic organisms with optimugnowth temperatures of more
than 60C have been investigated. These proteins show a subshaitigher intrinsic
thermostability than their counterparts from mesophitgamisms, while retaining the ba-
sic fold characteristics of the particular protein fanfilfrotein thermostability has been
repeatedly linked to an enhanced structural rigidity offtided state’.

2 Materials and Methods

Crystallographic models of 20 homologous pairs of mesaphitd thermophilic protein
structures were collected from the Protein Data Bank (PE®)ptein structures were mod-
eled as constraint networks, where vertices representsaamah edges represent covalent
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Figure 1. Mesophilic (a, b) and thermophilic (c, d) thernsifylike protease (TLP) directly before (a, ¢) and
after (b, d) the phase transition. Rigid clusters are degiass uniformly colored bodies. The blue body in (a) and
(c) represents the giant cluster. Arrows in (b) and (d) iatigootential unfolding nuclei. Roman numbers refer
to the numbering of the unfolding nuclei in Table 1. The N- &termini are marked.

and non-covalent bond constraints as well as angular @ntdr The network was con-
structued using the FIRST software (version 6.2\ fast combinatorial algorithm can
be applied to determine the number and spatial distribudgfdrond-rotational degrees of
freedom in the network and, hence, the local network rigidBuch a rigidity analysis is
available with FIRST.

By diluting non-covalent constraints in the protein stuwetnetwork starting from the
native state, FIRST has been applied to simulate thermalldingy of protein$ Here,
heating was simulated by removing hydrogen bonds from ti@ark in the order of in-
creasing interaction energy. The energy of a hydrogen belaties to the temperature at
which the bond breaks. In going from a rigid to a flexible naetiya phase transition can be
observed that defines the rigidity percolation threshotidéntify the temperature of the
phase transitiofi, concepts from percolation theory and network science aeptied’ 8

3 Results and Discussion

In a first step, the general percolation behavior of the caimgtnetworks was analyzed.
The phase transition can be viewed as a rigid to flexible iianf the kind observed in
network glasses. It is characterized by the decay of a lagggealuster (the giant cluster)
in the network! The temperature of the phase transition relates to themgegimperature
of the protein. A higher phase transition temperature wagded for approximately two-
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thirds of the proteins from thermophilic organisms from adlata set compared to their
mesophilic counterparts (data not shown).

In a second step, the microscopic structure of the netwoasselated to their observed
macroscopic behavior, in order to characterize stabi@gtidires of the protein structures.
For this, networks directly before and after the phase ttiansvere compared. In Figure
1, the rigid cluster decomposition of mesophilic and thephitic thermolysin-like protein
(TLP) is shown. Figure 1a and c show the networks from megiofaind thermophilic TLP
directly before the phase transition, respectively. Appéy, the giant cluster dominates
the system in both cases. Moreover, the giant cluster igddca the same region of
the proteins: It extends over the N-terminal domain and a@ap thes-sheet region
and ana-helix in the N-terminal domain. After the phase transititine giant cluster
decays into smaller rigid clusters and regions that arelfleXFigure 1b and d). The close
correspondence of the rigid cluster distribution in thenmeks of the homologous proteins
before and after the phase transition is an intriguing tefuwur analysis.

Unfolding nucleus Predicted sites Experimentally
verified sites’
I (-sheet region in the 21-24, 29, 31-34, 39; —
N-terminal domain 42,44,101-107, 114-118,
122-123
Il N-terminus of then-helix in the | 68-70 69
N-terminal domain
Il Region around F63 in the N; 54, 56-62 4,56, 58, 63, 65
terminal domain

Table 1. Comparison of predicted with experimentally vedfiunfolding site® for thermolysin-like protein
(TLP).

In analogy to experimental protein unfolding, where initiafolding of local regions
precedes the denaturation of the entire protein, the losgiality in certain regions is
considered to precede the phase transition. These regemsidentified as parts of the
giant cluster that become flexible upon the phase transii@ach representing an unfolding
nucleus. In case of TLP, three unfolding nuclei could be tb(fable 1, Figure 1). The
predicted unfolding nuclei were compared with experimiaidiga (Table 1). Notably, the
predicted unfolding nuclei are in good agreement with sitegre stabilizing mutations
have successfully been introduced into LR likewise good agreement between our
predictions and experimental data was found for many ott@ems from our data set.

4 Concluding Remarks

Our findings strongly support the notion that the stabilifytteermophilic proteins is in
general linked to an enhanced structural rigidity of theléal native staté.Furthermore,
direct support is found for the corresponding states canebjth states that homologous
proteins exist in corresponding states of similar flexipitt their respective optimal tem-
perature’ To the best of our knowledge, this is the first theoreticaflgtaddressing this
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issue by directly probing the rigidity of protein structaralong a thermal unfolding tra-

jectory for a comprehensive dataset. Regarding the ideatifin of regions that become
flexible when approaching the phase transition (unfoldinglei), we were encouraged
to see the good (albeit not perfect) agreement betweengbeeldsites and experimental
mutations that led to higher structural stability. The tedamonstrates that our approach
will indeed be helpful to guide data-driven protein engifr@gto regions where mutations

most likely will have a notable effect on thermostability.
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Water molecules are present ubiquitously in living cellsowséver, solvent contribution to

protein-protein interactions is often ignored in protpietein interactions studies. Previous
work has suggested the importance of wet spots (residuesating only through one water
molecule) in description of protein interactions. We useddetular dynamics approach to an-
alyze solvent in protein interfaces. Our results show tlsidence time of water molecules in
wet spots sites is found to be significantly higher than ofwatolecules on protein surfaces. In
terms of free energy these water molecules are heterogenBiewvertheless, their contribution
to the free energy of complex formation significantly chantfe energy function of the system
suggesting that water should be considered in detaile@iprotterface description.

1 Introduction

Water plays an extremely important role in all biologicadpesses. Water molecules have
been shown to be structurally conserved in protein compglexel to contribute thermo-
dynamically to protein complex formation, while their @snce time and diffusion char-
acteristics in protein interfaces are distinct from bulkl aarface solvent [1]. Despite all,
solvent is often ignored in the analysis of protein-proteteractions.

In our previous work we have developed SCOWLP, which, talkig account inter-
facial solvent, classifies all interfacial protein residwé the PDB into three classes based
on their interacting properties: dry (direct interactiodyal (direct and water-mediated
interactions), and wet spots (residues interacting onlgubh one water molecule) [2].
This study aims to gain insights into dynamic and energetperties of solvent in protein
interfaces using MD approach.

2 Methods

10 ns of MD productive runs were carried outin AMBER 8.0 udswhermal isobaric pe-

riodic boundary conditions and TIP3P water model. Intaaidateractions were defined
by the SCOWLP criteria [2]. If the interacting heavy atomseath wet spot counterpart
were closer than 3.6 to water molecules, the wet spot siteceasidered to be occu-
pied. A surface water site was defined by the volume with 108 bccupancy around

one of the protein polar groups outside the interface. A ldker site was defined simi-
larly in terms of total occupancy. Residence time distitutiensity, maximum residence
time (Tmax) and total occupancy were defined as the frequeficgnsecutively occu-

pied frames, maximum number of consecutively occupied éseand the total time when
the site was occupied, respectively. For free energy caticuls, the double decoupling
method of free energy perturbation was used [3]. The cogglerameter | was variated
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from 0 to 1 and back with a 0.01 step. The system was was erpigith for 10 ps for each
[ value followed by a 10 ps productive MD run.

3 Results

3.1 Residence Time of Water Molecules in Wet Spot Sites

The analysis of wet spot sites from 17 protein-peptide aotepr-protein complexes sug-
gests that residence time density distribution for eachisitlescribed asF'(t) = Ct~F,
where C is a normalization constant, and- 0 is the only distribution parameter. k and
Tmax were compared for wet spots, surface and bulk wates. ditevas shown that both
parameters significantly differ (at the level of t-Test pues=0.05) for different sites, in-
dicating that water molecules in wet spot sites are mordestalan in bulk solvent or in
surface hydration sites (Figure 1). At the same time, in eaethspot site there are many
occupancy events that have as short residence as in bulkfacssites. That agrees with
the model proposed by Makarov et al. Here, the correlatimetfan for residence time
in hydration sites is decomposed into the sum of fast and diffision exponent com-
ponents, which characterize bulk water motions and spdoifibydration site events, re-
spectively [10]. Other theoretical and experimental stadibtained similar residence time
values for different water sites, which vary from 1-10 pslfatk solvent to10%2 — 103 ps
for protein hydration sites, cavities and cores [1]. Tmaat kare well correlated (adjusted
correlation coefficient r=0.81 for In(Tmax) k, while ther@swmno correlation between total
occupancy of the sites and Tmax<{ 0.3) because these parameters are independent and
describe different kinetic characteristics of the site. id/fmax is defined only by the
energy barrier required for the molecule to leave the 9ita) bccupancy is also dependent
on the energy barrier of water transfer from bulk solventi® site. The residence time
analysis suggests that the potential barriers for wet sit@ts are significantly higher than
those for surface sites.

3.2 Free Energy of Water Molecules in Wet Spot Sites

To determine if water molecules contribute energeticallyofably to complex formation
we calculated their free energy. As a first step, free enefggrooving a water molecule
from bulk solvent was calculated. Electrostatic and varviaals components were equal
to 8.2 and -2.2 kcal/mol, respectively, which agrees wethwhe results obtained from
similar calculations correlated with experimental dath [Bhe second step consisted of
the transfer of a water molecule from the wet spot site to watu The difference of
these two energy components makes up the total energy ofea matecule transfer from
bulk solvent to the wet spot site. The obtained results foeisd water sites of the SH3
domain complex 1ujo show that the sites are very heterogenela particular, the free
energy of water molecule transfer from the site formed byctédoxyl oxygen of Glu12
in the SH3 domain and the side-chain of Arg64 in the ligand.i¢ kcal/mol, meaning a
favorable impact of a water molecule on the complex fornmatibhe calculations carried
out for another site formed by the side-chain of Asp34 in th8 $lomain and the side-
chain of Asn66 in the ligand revealed a positive change of Brergy (1.3 kcal/mol).
However, as it was observed in the trajectory, an additioéér molecule was present in
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this site and establishing a hydrogen bond with the first maiglecule forming the wet

spot. Consideration of both water molecules in the free@nealculations revealed an
energy gain of -6.6 kcal/mol, reflecting a water cooperstieifect. Another example of

cooperativity effect was found in the site formed by the sitiain of Asn52 in the SH3

domain and the main-chain of Met61 in the ligand. Here, altfiothe energy becomes
more favorable by consideration of two water moleculesdiiemn water contribution was

still not favorable. In surface sites no big negative valisgedree energy were found. In

other calculations using the double decoupling method riee £nergy calculation with

AMBER, the obtained values for the free energy of water inrhgidn sites changed from
slightly positive up to -5 kcal/mol [3]. The favorable enetig impact of water molecules
on complex formation was also found in a study of variousgirotomplexes by Monte

Carlo calculations using different force fields [5].

The most important conclusion that can be driven from thé fenergy analysis is
that water molecules in wet spot sites can not be charaeteuniformly in energetic
terms since in some cases they manifest properties simileatity waters and in other
do not even contribute favorably to the complex free enejgst (occupying an empty
space between the residues). Nevertheless, it is redlistiaim that the introduction of
water into protein interface description would cruciallyange the energy function of the
system.

4 Conclusions

We present a detailed molecular dynamics study of solveidf/gorotein complexes. Our
aim has been to gain insights into the properties of int@afaolvent. We show that water
molecules forming wet spots have significantly longer resat time than those on the
protein surface, meaning that in terms of mobility inteidhprotein residues and interfa-
cial solvent are alike. Although interfacial water molexziire very diverse energetically,
their contribution to the free energy of complex formatitvsld be not be ignored. Our
data confirm that water plays an important active role in girotnterfaces, suggesting
that consideration of solvent in the development of ené&denctions describing protein

interactions is essential.
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Protein structure prediction could be seen as either aarig@l or an algorithmic playground.
We are certainly interested in algorithmic improvementslf S8onsistent mean field methods
(SCMF) have traditionally been used in areas such as wawidmnoptimisation or protein
side-chain placement. We have been trying to apply the igetasd the most likely conforma-
tion for a protein. The philosophy relies on precalculatedrithutions of structural descriptors
given a set of known properties (a protein’s sequence) tiggawith a sequence, which is de-
composed into small overlapping fragments, the confonati space is described by a fixed
number of weighted multivariate Gaussians (the known itigions). As the conformational
bias, introduced by the sequence fragments, is local thghigeof the Gaussians for all over-
lapping fragments can be optimised iteratively. Unlike ecolar dynamics or Monte-Carlo
simulations, the optimisation is done in probability speater than on some initial structure.
Therefore, we do not need to calculate energies as in s@u&2iF. When the iteration con-
verges sample structures are generated from the weightess{aas. The current results show
that the procedure is able to find protein-like structures.céh also use this principle to predict
protein sequences from structure.

1 Introduction

We are interested in self consistent mean field methods @&k tiein structure prediction
problem. This also means formulating and building new fdiekls and treating also
protein sequence optimisation. Our method has a probédite®del of protein sequence-
structure correlation and approaches self consistentymtitis framework.

Many methods have already been applied to ab initio proteirctsire prediction. All
use some scoring schemes that are based on statistics phgifics and chemistry. We
want to avoid chemical detail as calculations become italde and also coarse grain
where one is usually dependent on preconceptions. Our agipis purely statistical with
its own approximations, but little reliance on human prexaptions.

2 Methods

We have developed and successfully applied a scoring scteepretein comparisons us-
ing sequence, structure or bbth It is based purely on Bayesian statistics and derived via
a maximally parsimonious automatic classfigom overlapping protein fragments. Each
is described by 5-7 amino acid types and 10-14 dihedral arfghen the backbone. The
method assigns a fixed number of class weights (typically3®D) to each fragment.

With this scoring framework we are able to generate proteircgire samples in four
steps (figure 1). First, the class weights matrix is buildrfrthe sequence. Then, the
conformational space is narrowed down by iteratively uipdgthe class weights of over-
lapping fragments. The local preferences are propagatdideaositions within a fragment
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are correlated. This favours the consistent classes. Freconditional class weights sam-
ple structures can be generated. As a final step, stericadask removed and the models
are collapsed by resampling random stretches. Unlike mistal SCMF, the method works

without assuming the Boltzmann distribution at any stage.
generate @
—

sample models

MSYKLTYFSIRGLAEPIRLFLVDQDIKFIDDRIAKDDFSSI. ..

Jbreak into

PIR classify narrow down
RLF. —pel class weights

optimise ®,W-distributions

Figure 1. Inthe online phase a sequence is broken into gurig fragments. Each fragment is classified leading
to a probabilistic description of possible conformatiofhis can be used to generate sample structures.

The method is available as a web service:
http://cardigan.zbh.uni-hamburg.de/ ~mahsch/schenk

Given an amino acid sequence the server generates a hugenofremples and ranks
them with their fragment probabilities,

1

Niragments Nelasses Ntragments

I X 1”ﬂfﬁAPj(ff"W) :

i=1 j=1

whereNy is number ofcx, w;| ;a4 is the conditional weight of clagsgiven the sequence

o, v
i

fragmentf4 andp; ( ) denotes the conditional density of the structure fragment

2% in classj.

3 Results

The Evaluation of 100000 samples of selected targets (figusriggests that the target
structure can be found among the generated modelselical targets seem easier than
those containing-strands, which is consistent with other methods. We alkutzed the
structure which corresponds to the distribution mean. Hewneave find it far from correct.

There are certain limits with the evaluation one should keepind when interpreting
the results. The multivariate Gaussian model lacks to atcimu the periodic nature of
dihedral angles and the use of idealised bonds lengths agldsaduring structure con-
struction introduces a fe\&ngstrﬂms error.

Another application of the classification is the predict@framino acid composition
from structure. The regenerated sequences are about 20%caleo the original. So far,
itis unknown whether these are bad sequences or alterpathatbilities folding to similar
structures.
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Target Protein  [Samples Best Highscore| Mean |[Mean (opt.)] Samples (opt.) FB5-HMM* ROSETTA*
PDB code Length a Bl <6A [%] RMSD [A] RMSD [AJRMSD [A] RMSD [A]<6A [%] RMSD [A] <6A [%] RMSD [A]|<6A [%] RMSD [A]
1FC2 43200 3510 4.1 6.2 6.9 5.5 9.503 21 % 33
1ENH 5420 0553 44 11.2 94 10.7] 0.387 46 6595 25 47 27
2GB1 5614 0.002 55 13 94 99 0.001 58 0037 49 0 6.3
2CRO 6550 0.050 53 871 106 91 0.052 52 0464 39 18 42
1CTF 6833 0.003 56 ny 127 1.0 0.009 54 6 53
4IcB 7640 0.003 5.7 12 104 8.0 0.004 53 0.089 43 17 47

Figure 2. Evaluation of 100000 samples of selected targétambers taken from Ref. 4.

1ENH best sample best sample (opt.) [ ghsco e mean mean (opt.)

Q’”j; \%ﬁ)&ﬁ <1

2GB1 best sample best sample (opt.)

highscore mean (opt.)

Figure 3. Two Examples from the evaluation.

4 Conclusions and Outlook

The method was tested with only a simple term to favour comipac It produces the
correct type of fold with secondary structure and loops imext places. There is some
limitation of coordinate reconstruction.

We are participating in the CASP8 competition. For this weiarproving the server
ranking. We are testing a combination with Monte Carlo ofgation methods. To im-
prove the quality of the generated models we are incorpwatolvation and long-range
terms into our scoring functions. Finally, we are fasterongsampling method.
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Applying multicanonical simulations we investigated folgl properties of off-lattice het-

eropolymers employing a mesoscopic hydrophobic-polar ehodWe study for various se-
quences folding channels in the free-energy landscape impaong the equilibrium confor-

mations with the folded state in terms of an angular overlammeter. Although all investi-

gated heteropolymer sequences contain the same conteydrofiobic and polar monomers,
our analysis of the folding channels reveals a variety ofattaristic folding behaviors known
from realistic peptides.

1 Introduction

The identification of folding channels is one of the key task@rotein folding studies.
While secondary structures depend on atomistic detailsh(as, in particular, hydrogen
bonding), tertiary structure formation should exhibit atai degree of universality. This
suggests that coarse-grained models might capture theaaiacteristics on mesoscopic
scales of this stage of the folding process. In this note Wwentea computer simulation
study that tests this idea by employing the off-lattice lopdrobic-polar AB model.

2 Model and Method

In the AB modet a heteropolymer or coarse-grained peptide is describedchsia of
hydrophobic (A) and hydrophilic (B) monomers whose enegggltained from specific
Lennard-Jones potentials between all nonbonded pairgebii@n aqueous environment
is modeled implicitly by the energetically favored A-A cants that lead to the formation
of a hydrophobic core at low temperatures. A smaller eneogyribution arises from the
local bending of the chain.

In the Monte Carlo simulations we applied the multicanohieahniqué where an
additional weight function leads to a flat distribution ineegy space. This allows the
reweighting of the data to any desired temperature with lgghagh accuracy. In order
to identify folding channels we used the angular overlagpeater introduced in Ref. 3
to compare equilibrium conformations at temperatiiraith the previously determined
ground-state structure. Two conformations are equ@l+# 1. The temperature-dependent
probability distributions of the total enerdy and@, Pr(FE, Q), then allow the analysis of
the chain’s folding behavior (for more details, see Ref. 4).

369



Figure 1. Ground-state conformation ofBA,BABA 2B2A3BA .

3 Results

Folding through intermediatesFor the sequence ,8A,BABA ,B,A;BA, the conforma-
tions at higher temperatures do not exhibit significant lsirities ( =~ 0.7) with the
ground-state conformation depicted in Fig. 1. As the distions Pr(F, Q) in Fig. 2
show, the main branch slightly moves to higligwvalues with decreasing temperature un-
til it splits belowT = 0.2. NearT =~ 0.1, the population of intermediate conformations
has increased and coexists with denatured states. AppngdEh 0.05, the intermediate
states dominate the canonical ensemble. The probabilitgdoatured conformations is
reduced, but the onset of an occupation of states with giitiéig to the global-energy min-
imum (GEM) is clearly visible. Atl" = 0.02, the majority of conformations has a large
overlap with the ground state and the heteropolymer hagdalato its native state.

T =0.05 T =002
Pr(E,Q) Pr(E,Q)
1 1
0.5 25 0.5 25
0 0
) 30 g X 430 g
08 08
s a5
Q 06 Q 06

Figure 2. Canonical distribution®r(E, Q) of energy E and overlapQ with the GEM for the sequence
A4BABABA 2BoA3BAS.
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Two-state folding and metastabilityA typical two-state folding scenario can be observed
for the sequence B&BA ,BA,BA,B,, where agair) ~ 0.7 at high temperatures indicates
that the heteropolymer is in a random state that possesssisnilarities with the GEM
conformation. Around” = 0.1 the canonical ensemble divides and a state @itly 0.9
is occupied in addition to the disordered conformationdwjt < 0.8. With decreasing
temperature the newly formed branch dominates the ensesnbdl@pproache® = 1.0
whenT — 0.

An example for metastability is provided by a third heterdypter with the sequence
A,B,A ,BA,BAB,, which exhibits in the low-temperature phase a glassy hiehawhile
at high temperature similar to the other cases all confaonatare distributed around
@ =~ 0.7, the main folding channel does not lead to a single grouatkstonformation.
Instead two rival conformationg) ~ 1 and@ = 0.75) can be found also at temperatures
belowT = 0.01.

4 Summary

Numerical investigations of medium size or large proteipsrieans of Monte Carlo sim-
ulations are very difficult since complex energy functioeswnd high computational ef-
forts. On the other hand, problems of comparable complexity equal or higher number
of degrees of freedom can be handled using simplified cagaaed models like the AB
model. Although the model is relatively simple and the itigeged sequences are only
permutations of each other (and were not designed espgcitidtee different kinds of
folding could be observed. Since all of them — folding througtermediates, two-state
folding and metastability — are also known from real pegtidae AB model seems to
resemble general characteristics of protein foldingherefore we believe that further re-
search on this model offers the possibility to gain qualieainsights in tertiary folding
where microscopic details are expected to be of less impogta
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The general effect of surface hydrophobicity/hydrophtijimn the aggregation of peptides is
studied by simulations of oversaturated aqueous solutibhgdrophobic and hydrophilic pep-
tides in pores with hydrophobic (paraffin-like) and hydriiph(silica-like) walls. Strong ad-
sorption of peptides on the pore walls is observed in the chtfee hydrophobic peptides in a
hydrophobic pore, where all peptides are strongly adsoabecaligned parallel to the walls al-
ready after 30 ns. Adsorption of this peptide at the liquaghar interface is quite similar. In the
other three cases considered, the peptides are repelladtti@walls, localized near the pore
center and do not show orientational ordering with respetité walls. Our results show that
even a single factor such as the water density distributamehdrastic effect on the character
of peptide aggregation near surfaces. A wider diversityasfsible scenarios can be expected
when specific peptide-surface interactions are taken ctount.

Adsorption of peptides on surfaces can strongly affect thggregation. Possible en-
hancement of the orientational ordering of peptides nedfases can promote the for-
mation of ordered peptide aggregates. This may be one ofattterf which makes the
intracellular and extracellular aggregation different. eékplore the general effect of sur-
face hydrophobicity/hydrophilicity on peptide adsorptiand aggregation, we performed
a series of computer simulation studies on oversaturateeaacs solutions of peptides in
slit-like pores with smooth walls interacting via a (9-3) hdtential with water molecules
and non-interacting with peptides. Two kinds of amyloidoigeoeptides were used: the
hydrophobic peptide NFGAIL, (residues 22-27 of the humaet ismyloid polypeptide),
and the polar hydrophilic peptide GNNQQNY (residues 7-13hef yeast prion Sup35).

4L —— hydrophilic wall
—— hydrophobic wall
——— liquid-vapor interface

water density, g/cm®

.
0.5 1.0
distance, nm

Figure 1. Water density profiles near hydrophobic and hylifiopvalls and at the liquid-vapor interface.
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Two kinds of pore walls were considered: a hydrophobic ffiardike wall, which causes
a pronounced water density depletion near the surface ljgeblue line in Fig. 1), and
a hydrophilic silica-like wall, which causes formation @fd highly ordered water layers
near the surface (see the red line in Fig. 1). Additionallyhave simulated a liquid-vapor
interface of the aqueous solution of hydrophobic peptidsgiénsity profile is shown by
the green line in Fig. 1).

Six peptide fragments were randomly inserted in a cubic Bdermth 6 nm such that
the peptides are at least 0.7 nm away from each other and hBsvay from the surfaces.
All atomic molecular dynamic simulations were carried ouTa= 330 K with Gromacs
software using the OPLS force field and SPCE water mole¢ulese PME method was
used to treat long range electrostatic interactfoéve simulations with different initial
velocities were carried out for the duration of 70 ns for eggde of surface and peptide
combination.

hydrophilic peptides hydrophobic peptides
015}

peptide density, g/cm®
o
IS

o
o
a

Figure 2. Density profiles of hydrophilic (left) and hydratic (right) peptides in the pores with hydrophilic
(red) and hydrophobic (blue) walls. Vertical black lineglizate locations of the pore walls. The pore center is
located az=0.

The density profiles of the peptide in pores, calculated kintpinto account all pep-
tide atoms, are shown in Fig. 2. Hydrophilic peptides shawrg} desorption from both
hydrophilic and hydrophobic surfaces and concentrate thegpore center (see left panel
in Fig. 2). The repulsion of these peptides is slightly sgr@mnin the case of a hydrophilic
surface. Hydrophobic peptides exibits a quite similar deson characteristics from a hy-
drophilic surface (see red line in the right panel in Fig./A&).opposite behavior is observed
for the hydrophobic peptides in hydrophobic pore: in allgiation runs, the peptides are
strongly adsorbed at the walls already after 20 to 30 ns (keeline in the right panel in
Fig. 2). As the peptides do not interact with the pore walig, tail of peptide’s density
profile crosses the pore wall. Quite similarly, hydrophgi@ptides strongly adsorb at the
liquid-vapor interface (not shown), which also has a stroypdrophobic character.

A strong adsorption of the peptides at the surface enhaheésdrientational order-
ing. The probability distribution of the angle between the pore surface and the vector
connecting two most distant peptide heavy atoms is showngin¥: When peptides are
repelled from the pore walls and localized in its centerahentation of their longest axis
is highly isotropic (left panel in Fig. 3). In contrast, stigpadsorption of the peptides at
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the surface causes their longest axis aligned parallelgovtidls. Thus, adsorption at the
surface not only speeds up their aggregation, but also geeeviavourable conditions for
the formation of ordered peptide aggregate characterigextensive3-sheet formation.

hydrophilic peptides hydrophobic peptides

in hydrophobic pore
at liquid-vapor interface

in hydrophilic pore
in hydrophobic pore

W

hydrophobic peptides

probability

in hydrophilic pore

30 60 30 60
o o

Figure 3. Probability distribution of the angte between the pore surface and the vector connecting two most
distant peptide heavy atoms.

The results shown in Figs. 2 and 3 evidence that even a siaglerfsuch as the wa-
ter density distribution near a surface has a drastic infleem the peptide aggregation.
Hence, the surface effects are expected to be much moretampar the case of intracel-
lular peptide aggregation. Presumably, such surfacetsféaa the effect of the finite size
of biological cell$ are the two main factors rendering the intracellular andaestlular
peptide aggregation processes different.
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The pentadecapeptide gramicidin forms a cation-specificcltannel in membrane environ-
ment. Two conformations are known up-to-date: the heauetd helical dimer (HD) and the
intertwined double helical form (DH). These two conformas are favored depending on the
specific conditions, but the biologically active form isllséi matter of debate. Nevertheless,
due to its small size, the gramicidin serves as an excelenthannel model for both computa-
tional and experimental studies. In this comparative studyfocus on the energetics of single
potassium ion permeation by means of the potential of meae f@®MF) for both gramicidin
conformations using molecular dynamics simulations. @sults show that the DH has a sig-
nificantly decreased central barrier with respect to HD,lyimg an increased ion conduction.
The barrier to ion passage is found to be closely related éacttannel flexibility. Multiple
ion permeation for the DH conformation is probably factk due to its opposing pore water
dipole moments at the pore entrances.

1 Introduction

Gramicidin A (gA) is the major component of the antibioti@agricidin from the soil bac-
teriaBacillus brevis Each monomer is made up of 15 alternating L- and D-aminosacid
capped at the two ends by a formyl group and an ethanolammggiWhen dimerized,
gA functions as a cation-selective transmembrane chanie. unique sequence of the
gA peptide is able to adopt a wide range of conformationsdaserarious environmental
factors. Mainly, two folding motifs of gramicidin were refied in structural experimental
studies, namely the single-stranded head-to-head dini&grdhld the double-stranded heli-
cal dimer (DH). While the head-to-head dimer was believdaetthe more thermodynam-
ically stable form in the membrane, experiments demoreddrtiat the double-stranded
dimer coexists with the single-stranded form in the meméiarcertain proportioh

Due to its small size and well-defined channel pore, granmégda popular model for
studying the properties and mechanism of ion conductiowetd&computational studies,
mainly of the HD dimer were published recerthAll of them showed that the free energy
of ion permeation through the HD channel contains an undgggchigh central energy
barrier and relatively weak binding sites at the two mouththe channel. On the other
hand, the DH conformation has been shown to translocateex walumn at an increased
rate as compared to HEJ. The opposing pore water dipoles found only in DH suggested
a facilitation of multiple ion passage in the double-streahdtructuré.

In this study, we focus on the ion conduction properties adhbioH and HD confor-
mations. By employing the free energy calculation methoel canstruct the potential of
mean force (PMF) of the ion permeation pathway. Our resolvshdecreased free energy
barrier and an increased structural flexibility for DH as pamed to HD.
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Figure 1. The two major conform:ations of gramicidin (PDB 1®4or HD, 1AV2 for DH) drawn in its solvent
accessible surface (water radius A¥

2 Method

The simulation system consists of a gA (see Figure 1), 124idstoylphosphatidylcholine
(DMPC) lipids and 6,142 water molecules with an ionic coricaion of 200 mM KCL.
For the PMF of ion permeation, the ion’s positions along tremgcidin channel are sam-
pled applying the umbrella sampling technique. The PMFéntbalculated by unbiasing
and combining the ion density distributions of the windowslations (0.5’°\ intervals)
along the direction of the bilayer normal using the Weightistogram Analysis Method
(WHAM). Molecular dynamics simulations were performedngsthe GROMACS pack-
age with the GROMOS53a6 protein force field and the Bergat firce field.

3 Results

The symmetrized PMF profiles of the two gramicidin conforimraé show a remarkable
difference in stabilizing a K ion along the gramicidin channel. As shown in Figure 2,
the HD profile has a large central barrier of about 46 kJ/molwide shallow well is
observed at the interface of the channel and the lipid heaggregion. lon entering the
channel experience a stepwise increase in free energyltRebtained in this study for
the HD conformation are in good agreement with previouséreergy calculations for the
barrier height. In contrast, the DH profile has a much less rugged energyl@neiih a
decreased central barrier of only 15 kJ/mol, at least a faxftthree lower than for HD.
Binding sites at the channel entrance as well as in the ligierfacial region are clearly
seen in the symmetrized profile. Experimentally, it was olesgthat gramicidin contains
two symmetrically related binding sites at both ends of tha@nmel.

Structural changes of the channel in response to the presgna K ion are e.qg.
reflected by changes in the pore radius. The DH conforma@srehpore with a uniform
radius of~ 1.7A in the ion-free state. In contrast, the pore is more naravitfe HD con-
formation at the channel entrances 1.0,&). In the window simulations, drastic changes
close to the channel openings were observed in DH which atadaia reduction of about
30% in the pore radius in contrast to only 20% in HD. This refiebe high flexibility of
the double-helical conformation in response to the conidgébn.
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Figure 2. Compare the PMF profiles offKpermeating the gramicidin channel in HD and DH conformation
(symmetrized).

4 Conclusion

We have shown that the double-helical dimer of gramicidia &z8-fold decreased free
energy barrier for ion permeation compared to the singksied dimer, possibly coupled
to the high flexibility of the DH channel in coordinating thagsing ion.
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We have implemented massively parallel stochastic opéticim methods for all-atom de-novo
protein folding using our free-energy forcefield PFEG2which is based on Anfinsen’s ther-
modynamic hypothesis We have implemented this approach (POEM) using a worldwid
volunteer computational grid to predictively and reprdblycfold the HIV accessory protein
1F4I from completely unfolded conformations.

1 Motivation

Protein folding and structure prediction at the all-atoreleemain important computa-
tional challenges. To achieve this goal in the long termiitnportant to develop methods
that are capable to predictively fold proteins and peptics unbiased unstructured con-
formations to the native ensemble. Direct simulation sstliave demonstrated the folding
of several small peptides and mini-proteins from compyje¢stended conformations, but
remain limited in the system size by the large computatieffatt required.

One great hope towards reproducible all-atom folding isd&eelopment of algorithms
that can exploit emerging massively parallel computafi@arahitectures.We have re-
cently developed an evolutionary algorithm, which gerieeal the basin hopping or
Monte-Carlo with minimizatiof®, method to many concurrent simulations. This ap-
proach was ported to the massively parallel BOINC architecon POEM@HOME
(http://boinc.fzk.de ) and verified by folding several proteins reproducibly.

2 Method

We have parameterized an all-atom free-energy forcefieldpfoteins (PFF01/02),
which is based on the fundamental biophysical interacttbas govern the folding pro-
cess. We could show that near-native conformations of aépeoteins correspond to the
global optimum of this forcefield. We have also developedspecifically adapted, effi-
cient stochastic optimization methods (stochastic tumgglbasin hopping, evolutionary
algorithms) to simulate the protein folding process. Fet& and simulation methods
are implemented in the POEM (Protein Optimization with fE&gergy Methods) program
package.
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2.1 Optimization Strategy

We have generalized this method to a population of fixed stzelwis iteratively improved
by an arbitrary number of concurrent dynamical procéséedhe whole population is
guided towards the optimum of the free energy surface witmalgs evolutionary strategy
in which members of the population are drawn and then sudgjettt a single simulated
annealing basin hopping cycle. At the end of each cycle theltiag conformation either
replaces a member of the active population or is discarddte decision tree for this
process is illustrated in figure 1.

ADD
add the result to the population,
e 15 the new. =i by increasing the population

REPLACE
imilar conformation wit
I e const

Figure 1. Evolutionary optimization strategy.

2.2 POEM@HOME

In this investigation, we deployed the BOINC server POEM@HD
(http://boinc.fzk.de ), which explores the free-energy landscape in many
parallel dynamical processes, which are coordinated imglesievolutionary algorithm
population as outlined in section 2.1. The overall compota work is thus segmented
into medium size work-units, which can be processed indedgeithy.

3 Results

3.1 Folding of the HIV Accessory Protein 1F4l

The 40 amino acid target 1F4l was folded using the evolutipregorithm on
POEM@HOME. The population was initially seeded with a singktended ’stick’ con-
formation. Figure 2 shows the convergence of the energy asdidn of the total number
of basin hopping cycles. We find that the best energy congaygiekly to a near-optimal
value with the total number of basin hopping cycles. As alteguhe population diversity
criterion, there will always be a finite difference betwelea average and best energy. This
is established by an acceptance threshoRIAfRMSD for the inclusion of new structures
into the population.
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Accepted conformations

Figure 2. Left: Evolution of average (upper curve) and blesté€r curve) energy in the folding process. Right:
Overlay of the simulated and experimental structure of 1F4l

| E[kcal] | RMSD [A] | Secondary Structure |

[ Exp | - | CCHHHHHHHHHTTCCHHHHHHHHHTTTSCSHHHHHHHHHC

—107.77 | 256 | CHHHHHHHHHHHSCCHHHHHHHHHHHHHCHHHHHHHHHHC
—107.12 8.11 CHHHHHHHHHHSCCSSSSCBTTSCCSHHHHHHHHHSCSBC

—106.30 6.60 C¢HHHHHHHHHHHCSSSHHHHHHHHHHHHCHHHHHHHHHHC
—103.90 7.95 CCHHHHHHHHHSCCSSSEEBTTBCSSHHHHHHHHHCCEEC

—103.66 4.90 CCHHHHHHHHHHCCCHHHHHHSCCBTTTBHHHHHHHHHHC

Table 1. Top five best energy structure of different topolfayyfolding Target 1F4l.

Another indication of the diversity of the algorithm can Heserved in table 1. All of the
best energy structures show significant differences inm 8egiondary structures. The best
energy-structure found has a RMSD21$6A to the native structure.

4 Conclusions

We have shown, that the mapping of the 'folding problem’ ocatooptimization prob-
lem permits the use of methods that speed the exploratidredf¢e-energy surface. The
present study demonstrates, equally importantly, thagibssible to parallelize the search
process by splitting the simulation into a large number afejrendent conformations,
rather than by parallelizing the energy evaluation.
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1 Introduction

Long range interactions between particles often play aromapt role in biomolecular
simulations in order to describe the structure and dynawifiggarticles correctly. The
calculation of this type of interaction often limits the #rand length scale of a simulation,
since it scales a®(N?), whereN is the number of particles in the system. In order to
overcome this limitation, different types of fast algonith of orderO(N log N') or O(N)
were developed (for an overview see e.g. Ref. 1,2). One stypie of algorithms is based
on a Wavelet transform techniguiéd computationally intensive part consists in preparing
the 2d-Wavelet transform of inverse distances between fix&tpoints in space, onto
which particle properties are transferred. Since the gridatic, this computational intense
part has only to be performed once. Due to memory requiresvard performance, it is
desirable to perform these calculations on a scalable ctenpuchitecture. To this end
the Cell Broadband Engine (Cell/B.E.) heterogeneous ouarki processor was chosen to
explore its capabilities and high potential in performanTée processor characteristics
include multiple heterogeneous execution units, SIMD psstng engines, fast local store
and a software managed cache. Applications can achievdameance which is close to
the theoretical peak performance if specific features apaeed.

In the present work an implementation of the fast 2d-Wauedetsform, realized via a
triple matrix multiplication, was developed using the maprogramming API of the IBM
Software Development Kit (CellSDK. In this implementation the architectural require-
ments of the Cell processor are taken into account and Catifspoptimizations are ap-
plied where practical. Therewith, the difficulties and gesbs in porting code to Cell/B.E.
and using sparse linear algebra operations on the Cell gsocare assessed. Finally the
results of the native implementation are discussed and acedpo the results of the same
algorithm implemented via the Cell Superscalar framewB&ISs), a high-level portable
programming model.

2 Method

The method of calculating Coulomb potentials with the hdlWavelets was described
in Ref. 3. Here, we concentrate on the description on how lirutze the triple-matrix-
multiply

A, =T{W,AW/; 1} (1)

385



5000————

4000

w
o
(=}
S

row index i
row index i

n
=]
(=]
S

4005 401

]
4000

| | . | .
2000 3000 4000 500(
column index j column index j

(1] . |
0 1000

Figure 1. Structure of matricé®/; (left) for a Daubechies-4 Wavelet-basis (details are shiovihe insets) and
A (right) with threshold value = 0.01 and compression rate = 81%.

where the matrisW, is the resulting Wavelet transform matrix on levelhich is sparse
and contains both the Wavelet and scaling coefficients. Tiuetsre of this matrix is
displayed in Fig.1. On the other hand the magix R"+*"s is dense, as it contains the
inverse distances between equi-spaced grid points, wkigis the number of grid points

in the system. Sinc&/, « N, the dimension of the matrix may become rather large, which
requires an economic memory management. Fin&{lj}s a thresholded Wavelet transform
of A, which results from the threshold operati®f. ; ¢}, where all absolute values below
a given value are set to zero.

In order to apply the method also to larger problem sizesVagelet matrixW, is
partitioned and transferred in parts to the SPU. Infornmatibout the matrix is stored
in Compressed Sparse Row (CSR) forfnéor which four arrays are introduced: (i) the
elements of the matriy, _elem ; (ii) column index of n-th elemeni,_index ; (iii) offset
value,nnn _off , in order to address the first element of rgwiv) number of elements of
row i, Nj _W.

The partitioning oW, does not guarantee that every block of data contains coenplet
rows. Transferring incomplete rows to the SPU would, howeawerease the complexity
of the computation algorithm. A possible method to avoidtpy of rows consists in
padding. Therefore, in order to align the arfaglem a second array has to be allocated
where rows oW, are grouped into 16 kB blocks. If one row is split by a block der
the complete row is put into the next block and the currentlbls filled by padding. The
handling of array _index proceeds analogously. The rowsWw§f do not always contain
the same number of non-zeros. Therefore, an array is intemtiwhich stores the number
of rows in each block. Using this block information the cepending elements of arrays
nnn_off andnj _wcan be loaded. Note, that these arrays are not aligned. foheiie
is necessary to expand the needed part to an aligned exthéct wontains all the data
actually required. _

In the present implementation, the matéix is calculated column by column in two
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Figure 2. Timings for a native implementation of the aldaritand for the CellSs implementation for Wavelet
transforms of different levdl CellSs outperforms the native implementation, sinceufestlike double-buffering
are not considered in the native version.

steps as follows(for different implementations cf. Ref. 8)
A =W AW/ = &, =W, x (Axw]) 2)

In this equatiori, is theg-th column of the result matriA andw}f is theg-th column of
the transposed Wavelet math. In the first step the intermediate reshyjt= A x w:{

is calculated. In the second step ip¢h column ofA is calculated vidi, = W, x b,.
These steps have to be repeated for each ofMheolumns. In the implementation of
this algorithm the intermediate result is buffered in a temporary array on the SPU. To
decrease DMA transfers this intermediate array is not tesresd back to the PPU.

The two main aspects which are to be considered for thise@gtin are the amount of
data and the number of floating point operations on the SRideSor realistic applications
N, ~ 323, the size ofA easily exceeds the memory capacities of the SPU (256 kB)-How
ever, considering the inverse distance matrix in detatgaés that full storage of elements
contains a lot of redundency. I¥, = n?® there areNV,(N, — 1) distances between grid
points, of which onlyn(n + 1)(n + 2)/6 — 1 are different. Therefore, only non-redundant
data are calculated on the PPU and transferred to the SPUewheddressing of matrix
elements is performed in order to map a three-dimensiongdlagro a two-dimensional
matrix. That means that it is enough to st@éN,) values for the kernel ol instead
of O(N7) because of redundant entries. The Wavelet maifjxis blocked and loaded

blockwise onto the SPUs, whefeis then calculated in two steps column by column and
then thresholded. The intermediate result is buffered erSfAU and not transferred back
to the PPU.

387



3 Results

A native programming approach was compared to one, whel&<elas used. Fig. 2
shows the result of this comparison for Wavelet transforhuifferent sizesV, and levels
[ for a Haar-Wavelet transform.

As a first result it is found that the scaling of the aIgontme(N?) as it could be

expected for a sparse-dense-sparse matrix multiply. €bidt; however shows that (i) the
algorithm is efficiently implemented and (ii) with increagiproblem size the PPU-SPU-
communication is not a limiting factor. This leads to opsmi for increasing problem
sizes.

As a second result it is seen that the CellSs based impletr@ntatperforms the na-

tive implementation in all cases by about 10-20%. This pesahat CellSs is not only a
very nice tool to ease Cell programming, but that it is alske &b produce high perfor-
mance code. The reason for the difference of the two appesanlay be found in neglect-
ing SIMD vectorization and features like double bufferimgtihe native implementation.
Since the complexity of the code already was large, thegariemawere postponed in first
instance. The result shows that CellSs leads to very goddmpegince while reducing the
programming effort at the same time.
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We developed a RedMD package to perform molecular dynanislations for coarse-
grained models of proteins, nucleic acids and its comple@ulations can be carried out
in the microcanonical ensemble, as well as with BerendsdrLangevin thermostats. We pro-
vide tools to generate initial configuration and topologyickhare based on the elastic network
approach and its extensions. Topology generators can biieaolly users to add for example
a new potential type. The code is written in C/C++ languagesthe structure/topology of a
molecule is based on an XML format. The code is distributedearGNU public licence and
will be available athttp://bionano.icm.edu.pl/

1 Introduction

We created an open-source, scalable package for reducad€egrained) molecular dy-
namics (MD) simulations of biomolecufesn a micro- to mili-second time scales. It is
written in C/C++ and parallelized with an OpenMP technolofy generate the topology
and force field of a molecule we use an XML-based format. Guiyémplemented force
field generators include the Elastic Network Mddahd its anharmonic extensions for the
ribosomé, nucleosom&and HIV-1 protease

2 Molecular Dynamics

MD is a widely used technique to investigate the dynamicapprties of molecules. It
numerically solves in finite time steps the Newton's equegiof motion and provides
trajectories i.e., the coordinates and momenta of pastigtea function of time. Our MD
package generates coarse-grained representations afyoiggrs in which entire groups
of atoms are represented by single interacting centersiosatoms), (see Figure 1). In
one bead models, one pseudo-atom can represent the whale awid or nucleotide.
The coarse-graining procedure is applied to reduce the suwhbdegrees of freedom,
increase the integration time step, and achieve at least@saicond MD simulation time
scale. RedMD currently supports MD simulations in the miamronical ensemble, in the
canonical ensemble with the Berendsen thermostat, andtiétthangevin bath thermal
coupling. To enlarge the integration time step we impleeénhe SHAKE algorithh’
which was developed to satisfy the bond geometry consgran¥iD simulations.
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Figure 1. The coarse-graining procedure. Left: all-atopresentation, right: reduced one-bead model.

2.1 Microcanonical Ensemble

In the microcanonical ensemble (NVE) we consider the Neistequation:
dp; OV

a —om

whereV is a potential energy function which depends on nucleic dioatesr;, p; is

the momentum of a particleand NV is the number of particles in the system. Numerical

solution of this equation generates the trajectory of mmti&e implemented two popular

algorithms: velocity Verlet and Leap-Frdghich are based on Taylor expansion.

2.2 Thermostats

To maintain constant temperature RedMD provides variogsnibstats. A common
method of both thermal coupling and reproducing the contéitt solvent molecules is
Langevin Dynamics. We consider the equation:
dp; oV
dt — Or;
wherev; is the collision parameter arﬁj(t) is a random force vector satisfying:
< R(t) >=0, < RA)R({') >= 2yikpTm;6(t — t')

wherek is the Boltzmann constant afidis the bath temperature. We solve this equation
with Briinger-Brooks-Karplus integrator (BBK)Through the Langevin equation the sys-
tem couples to a heat bath globally, but is also locally sttbfeto random noise. If we are
interested in imposing the global coupling with minimaldbdisturbance the Langevin
equation is modified to:
dp; ov To . )
=— Al=-1)p ,i=1,...,N
dt FrAL ( T > b !
whereTy is the bath temperatur,the current temperature andin ps—!) determines the
strength of coupling with the thermal bath. This is knownlessBerendsen thermostat
The solution is based on scaling the momenta in each stepdwtar f

— b+ R()  ,i=1,...,N

whererr is equal to(2) L.
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2.3 Brownian Dynamics (BD)
RedMD provides a BD simulation based on the Ermak-McCamnigorighm!®. The
trajectory is generated according to the equation:

D - .
_F(t)At + Ri(t Li=1,...,N
RMAtE @)

whereD is a diffusion coefficient of a molecule art{t) is a random force vector satisfy-
ing:

it + At) = Fi(t) +

< R(t) >=0, < Rt)R(t') >=6DAts(t —t').

3 Parallelization

Because the calculation of the non-bonded interactions@mes is the most time con-
suming step in MD, its optimization is very important. To plelize this calculation we
applied the OpenMP technology which uses a shared memdritesture. For the nucle-
osome model test force calculations for 1000 NVE simulasips show that the speedup
(defined as the ratio of time using one thread to the time ofguli threads) for 7 cores is
over 6 so it is almost linear.

4 The XML Force Field Format

The initial configuration and force field of the molecule aemgrated in an XML-based
format. We provide utilities to produce the input XML file frothe PDB or PDBML/XML
files (http://www.rcsb.org/pdb/ ). Our XML format is a flexible way of repre-
senting the topology and force field. It contains informatim atomic ids, masses, names,
coordinates, and properties such as bonded and non-boatidipls. It is possible to save
any calculated values like temperature factors, forcesergies (see example below).

<?xml version="1.0"?>
<STRUCTURE>

<I-- Generated with: ./RedMD_genModel_Rib 1A36.txml| -->
<NONBONDED>
<NBMORSE cutoff="35.000000">
<PAIR typel="CA" type2="CA" alpha="0.707000" E0="0.0550 55" 10="9.500000"/>
<PAIR typel="P" type2="P" alpha="0.707000" E0="0.071348 " 10="17.600000"/>
<PAIR typel="CA" type2="P" alpha="0.707000" E0="0.06267 4" 10="12.930584"/>
</NBMORSE>
</NONBONDED>

<MOLECULE molld="mol1">

<GROUP label="basePairs" k="0.600000"/>

<ATOM id="1" name="P" x="-50.7" y="76.7" z="327.1" resNam e="U" chainID="A" resSeq="2" m="305"/>
<ATOM id="2" name="P" x="-50.8" y="73.7" z="332.1" resNam e="U" chainlD="A" resSeq="3" m="305"/>
<ATOM id="3" name="P" x=" 75.0" z="336.9" resNam e="G" chainID="A" resSeq="4" m="344"/>
<BOND idAtom1="1" idAtom2: 0" 10="5.80"/>

<BOND idAtom1="1" idAtom2:
<BOND idAtom1="1" idAtom2="4" k="0.5" 10="9.40"/>

<MORSE idAtom1="1" idAtom2="5" alpha="0.707" 10="6.19" E 0="0.71" mark="0:P:P"/>
<MORSE idAtom1="1" idAtom2="6" alpha="0.707" 10="6.87" E 0="0.63" mark="0:P:P"/>
<MORSE idAtom1="1" idAtom2="7" alpha="0.707" 10="11.90" E0="0.27" mark="0;

<IMOLECULE>

<ISTRUCTURE>

5 From PDB to Trajectory

First, one needs to convert a PDB or PDBML file to our XML file rfaat with one of
the programs distributed in the RedMD package. The userltaose from a few coarse-
grained force fields. Second, the user needs to specify MDIation parameters and then
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can generate the trajectory. Currently supported trajgctotput formats are XYZ, PDB,
DCD and VEL (analogous to XYZ but saves velocities).
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The diphenylalanine peptide (FF), the core recognitionifnadtthe Alzheimer’s 3-amyloid
peptide, self-assembles into tubular structures of highildty. We have studied the aggrega-
tion properties of FF and the related triphenylalanine idep=FF) by 0.4xs implicit- solvent
Replica Exchange MD simulations of aqueous FF and FFF sokitiThe FF and FFF peptides
form ellipsoidal aggregates with a similar density and shimpthe simulations. Within each
aggregate, we observe structural features, which arestensiwith the properties of L-Phe-
L-Phe crystals. In particular, the aromatic planes of exteéng sidechains are mainly oriented
perpendicular to each other and the backbone moieties efalef2-6) adjacent peptides in-
teract frequently by head (NH) -to-tail ("OOC) hydrogen bonds, forming open or closed
(ring-like) linear networks. The ring networks of six pefes observed in the FF simulations
are reminiscent of the hexagonal FF rings in the L-Phe-L-&¥stals. The rings are energet-
ically more stable than the open networks, due to both ndar@md polar interactions. The
network propensity is higher in the FFF solution, mainly doestronger non-polar and to a
smaller extent due to stronger polar interactions in thevods of the FFF aggregate; in line
with this observation is the somewhat higher stability af #FF aggregate, observed in the
simulations.

1 Introduction

The ability of short peptide fragments to self-assemble amhyloid$, nanotubesand sys-
tems responsive to external stimuli (pH, temperature, eotration of specific solute¥)
is the focus of intense experimental and computationalissuici recent years, as it can
provide insights on the formation of amyloid fibers and hateptal applications in bio-
material synthesis, nanodevice fabrication and tissuamergng.

The diphenylalanine peptide (NH_-Phe-L-Phe-COOH, FF), the core recognition mo-
tif of the Alzheimer’s3-amyloid peptide was already been crystallizednder certain
conditions the diphenylalanine peptide self assemblesriahotubes of remarkable stiff-
ness, which can serve as casts for the fabrication of silver naresfv In the crystals,
the FF peptides are hydrogen-bonded head-to-tail, forrelgal chains with six pep-
tides per helical turn and a #®van der Waals diametér Adjacent helices are oriented
parallel to each other and interact extensively via andatg three-dimensional stacking
arrangement of the aromatic side chains. This structufatrimation provides some hints
for the molecular organization of the peptide nanotibB®vertheless, the understanding
of the key factors responsible for the nanotube stabibrai still not complete. For ex-
ample, the peptide Ac-Phe-Phe-blfbrms highly-ordered tubular structures despite the
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lack of charge in its terminal ends, suggesting that the@cteons between the aromatic
sidechains rather than the electrostatic backbone irttensgplay the key role in the self-
assembly process. At the same time, chemical modificatibified-F terminal ends cause
the formation of macroscopic hydrogéts amyloid-like fiber§, suggesting that the nanos-
tructures formed by FF depend also on the chemical naturaérdctions of its terminal
ends.

To obtain further insights on the aggregation propertigh@$e systems, in the present
study we investigate by MD simulations the properties ofesmyis solutions formed by FF
and the related system, triphenylalanine peptide {ffHF-COOH).

2 Systems and Methods

All simulations were performed with the CHARMM program, siem c35a1°. We simu-
lated two aqueous solutions, consisting of 12 FF dipeptiaes8 FFF tripeptides, respec-
tively. The peptides were placed in a B7eubic box, modeling 34 mgr/ml (FF) and 33
mgr/ml (FFF) solutions. The box was replicated by periodiaidary conditions. The
peptide atomic charges, van der Waals and stereochemiaahpters were taken from the
CHARMM27 all-atom force fieltf12. The aqueous solvent effects were modeled implic-
ity by the Generalized Born approximation GBS To improve the conformational
sampling, each solution was simulated by the replica-axgadcheme, with 10 replicas
spanning the temperature ranges 289-405 K (FF) and 288-4F&K). The replica tem-
peratures were optimized iteratively in the beginning & gimulations as in ref. 15, 16,
targeting a uniform exchange probability of 18-20% amonjg@eht replicas. The simu-
lation length for each temperature was 40 ns, yielding d sirtaulation time of 0.4us for
the 10 replicas. Replica exchanges were attempted at 1I@tgrvals. The analysis was
done with the CHARMM modules and in-house FORTRAN programs.

3 Results and Discussion

Geometrical Analysisin both solutions the peptides form approximately ellipabag-
gregates, which are stable at 300 K. The geometrical priegeuf the aggregates in the
300-K simulations are summarized in table 1.

Aggregate Properties FF FFF
Radius of gyration/&) 9.48+0.41 9.25-0.30
Volume @A3) 3495.7714.53 3422.0413.28
Density (gr/ml) 1.779:0.007 1.782:0.006
1112, 11113, 12/13 0.76+0.12, 0.66£0.10, 0.88-0.06  0.76:0.11, 0.66-0.09, 0.86-0.06
PSA (%) 29.06:6.04 (42.18:-1.44) 24.44.48 (34.64:3.41)

11, 12 and I3 are the principal moments of inertia of the aggte. PSA is the polar accessible surface area.
The numbers in parentheses correspond to the average P$AaoidH-FF monomers, computed by independent
monomer simulatiorg.

Table 1. Geometrical characteristics of FF and FFF aggeegt300 K.
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The FF and FFF aggregates have similar shapes (indicatechéoycdmparable
moment-of-inertia ratios) and densities. The radius oaggn of the FFF aggregate has
a somewhat smaller mean and standard deviation (sd), iefjettte fact that the FFF
aggregate is somewhat more stable. In line with this obsenjathe radius of gyration
of the FF aggregate increases faster with temperHturEhe solvent-accessible surface
area of the FF and FFF peptides has a mixed character, due twthpolar sidechains
and the polar (charged) terminal ends and interior peptiaelb. The average fraction of
the FF and FFF peptide polar solvent accessible surfacR8#) is 42.2% and 34.6%,
respectively, at 300 K, as computed by simulations of theritFREFF monomers (with the
same implicit model GBSW 4. The PSA ratio is reduced in the FF and FFF aggregates,
reflecting the fact that the polar groups participate in sgviateractions. Indeed, the
peptides form network structures in the aggregates, as algznbelow.

Network Structures The backbone moieties of several (2-6) adjacent peptidesre-
qguently arranged into open or closed (ring-like) lineamwweks, in which adjacent pep-
tides interact by head (N#t)-to-tail (TOOC) hydrogen bonds and the aromatic planes
of interacting sidechains are mainly oriented perpendicid each other. A typical, six-
peptides ring of the FF simulations is shown in fig. 1, alontipwhe hexagonal ring pattern
observed in the L-Phe-L-Phe crystal§'he open networks are more frequent due to en-
tropic reasons; nevertheless, the closed networks arestairke energetically, due to both
non-polar and polar interactiolfs The network propensity is higher in the FFF solution.
Energetic analysis shows that the non-polar and electiosigeractions are stronger in the
networks of the FFF aggregafethis is in accord with the higher network propensity and
the higher stability of the FFF aggregate. The frequenchefteptide networks decreases
with temperature, in agreement with the increase in thausagi gyration and the loss of
stability!”.

Figure 1. Left: The hexagonal ring network observed in FE@l¢. Right: A typical, six-peptides ring network,
observed in the FF simulations.
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4 Concluding Remarks

We have investigated the conformational properties of agséF and FFF solutions by
implicit-solvent Replica Exchange MD simulations. In bathlutions, the peptides form
stable ellipsoidal aggregates. Within the aggregatesdhtges are arranged into open and
closed linear networks, which are stabilized by head-ieatal sidechain interactions and
have some of the structural features observed in the FFatgy,sThe intermolecular inter-
actions are stronger in the FFF system, in line with the higfegjuency of inter-peptide
networks and the increased stability of the FFF aggregateeitemperature range of the
simulations. An energetic analysis shows that the sidensh@intribute to the aggregate
stability by forming direct interactions and by modulatitige screening of the termini
electrostatic interactions by solvent.
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1 Introduction

Protein interactions are essential for intra-cellular cmmication in biological processes.
Proteins are composed of small units or domains that cariqailysnteract together form-
ing multi-domain protein complexes. A single protein canéhaeveral binding regions,
and each region can engage distinct ligands, either simadtasly or at successive stages
of signalling. Detailed information about protein intetiaas is critical for our understand-
ing of the principles governing protein recognition meadkars. The structures of many
proteins have been experimentally determined in compléR different ligands bound
either in the same or different binding regions. Thus, tihecstiral interactome requires
the development of tools to classify protein binding regioA proper classification may
provide a general view of the regions that a protein usesrtd bihers and also facilitate
a detailed comparative analysis of the interacting infdiomafor specific protein binding
regions at atomic level. Such classification might be of pi&use for deciphering pro-
tein interaction networks, understanding protein funttiational engineering and design.
We present the SCOWLP database and web-interface [1, Zneefwork to study protein
interfaces and for comparative analysis of protein famihding regions (PBRS).

2 Methodology

SCOWLP was developed following several steps:

2.1 Extraction of Interfaces and Contacting Domains

An accurate definition of the interacting residues is crucidave a proper clustering of
a family PBR. Our database includes all protein-interactiomponents of the PDB in-
cluding peptides and solvent, which until now have beenustedd from systematic protein
interface analysis and databases. The inclusion of watérhers the definition of protein
interfaces by considering residues interacting excligilsg water, defined as wet spots
[3]. In our database all interface interactions are descrit atom, residue and domain
level by using interacting rules based on atomic physicotbal criteria [1]. The defini-
tion of a domain was extracted from the SCOP database [4]. dsider "interface” all
domain-domain interactions ; that means those belongitiget@ame protein and also to
different proteins. SCOWLP contains 79,803 interfacedaioerd in 2,561 SCOP fami-
lies. We grouped the domains participating in each interfacSCOP families, obtaining
for each family a list of contacting domains with the resislf@ming part of the binding
region.
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2.2 Pair-Wise Structural Alignments (PSAS)

A reliable alignment is indispensable to calculate the lsirities among binding regions.
For this purpose we used MAMMOTH, which has shown proven @myuto structurally
align protein families [5]. We performed all-against-a$®Rs of the contacting domains
for each family to be able to measure the similarity amonglibig regions. SCOWLP
contains about 160,000 contacting domains uneven digtdday families. This represents
276 million PSAs performed in a cluster of five Pentium IV 2.615 The alignments
were performed taking the C atoms into account and using apgaglty function for
opening and extension [6]. The root-mean-squared deniéi®SD) was not considered
for measuring the similarity between two interfaces, asstifgerimposed members of the
same family share a common structure.

2.3 Similarity Index (Si)

The residues described in SCOWLP forming and interface wegped onto the domain-
pair structural alignment. We calculated a similarity iRd8i) based on the number of
interacting residues that overlap and the length of bo#frauting regions by:

, _ 21 Rovertap(a,b)

S’l_(a, b) = IRMM(Q)JRQQPS(Q)JF;;%MQM(M TRy wherg aandb rep_resentthe Mo
domain structures aligned. The number of interacting tessdhat match in the PSA is
represented by IRoverlap(a, b). This value is divided byaberage number of the inter-
acting residues in both domains excluding the interactésidues located in gap regions

in the structural alignment (IRgaps).

2.4 Clustering Binding Regions

Based on the calculated Si, we clustered the binding regibesch SCOP family using the
agglomerative hierarchical algorithm following sever@s: 1) Define as a cluster each
contacting domain. 2) Find the closest pair of clusters aadymthem into a single cluster.
3) Re-compute the distances between the new cluster andé#uh remaining clusters.
4) Repeat steps 2 and 3 until all contacting domains areeskrstinto a single cluster.
To re-compute the distances we used the complete-linkagfeoahewhich considers the
distance between two clusters to be equal to the minimuniagiityiof the two members.

2.5 Binding Region Definition by Si Cut-Offs

The result of the clustering can be represented in an imguitee or dendrogram, which
shows how the individual contacting domains are succdygsiverged at greater distances
into larger and fewer clusters. The final PBRs depend on theuSoff that is set up.
Based on our observations of a representative group of immile set up an empirical
maximum similarity cut-off value of 0.4. We pre-calculatbe results for Si cut-offs at 0,
0.1, 0.2, 0.3 and 0.4 to offer a range of values that allowBiéi in the final analysis of
PBRs. The SCOWLP web application offers the possibilityisplhy the classification at
any of these cut-off values. Our classification clustere@, Q@0 contacting domains from
2,561 families in 9,334 binding regions. About 65% of the ilaaa contain more than one
binding region. These values are obtained for similaritpzmnd may vary depending on
the similarity cut-off applied.
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2.6 Interface Definitions

In order to differentiate binding regions having singl¢eifiaces from multi-interfaces, we
identified in each binding region the partner for each cdaimgadomain. Each binding
region was divided in sub-clusters when there were diffedemain families interacting
in the same binding region. This resulted in a total of 10,B8@faces. The classification
shows a 78% of the binding regions having a single-interéanxkthe rest having mainly 2
or 3 interfaces per region. These numbers have to be caréifitdirpreted by taking into
account the limitation of the structural information cdng&d in the PDB (i.e. 1,715 bind-
ing regions contain a uniqgue member in the PDB and therefalseane known interface
per binding region).

3 Conclusions

SCOWLP database contains detailed interacting informatfgrotein interfaces and the
hierarchical classification of PBRs. It represents a fraorkwo study protein interfaces
and for comparative analysis of protein family binding mtd. This comparison can be
performed at atomic level and allows the user to study icterae conservation and vari-
ability. The new SCOWLP classification may be of great wtildr reconstruction of pro-
tein complexes, understanding protein networks and ligisign. The web application is
available ahttp://www.scowlp.org
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GABA(A) receptors are ligand-gated chloride channels thatliate inhibitory neurotransmis-
sion. The GABA receptor associated protein (GABARAP) interacts with tamma?2 subunit
of the GABA, receptor, modulates channel kinetics and promotes recefustering. Two
hydrophobic pockets acting as indole binding sites weretifled as major determinants of
the ligand specificity of GABARAP by two dimensional NMR. Wientified peptide K1 that
binds GABARAP with high affinity. Co-crystals of GABARAP aril diffract to 1.3A res-
olution. Each hydrophobic pocket of GABARAP is occupied binygptophan residue of the
peptide. Recently we found that calreticulin binds GABAR&®-crystals of GABARAP and
calreticulin (178-188) diffract to a resolution of 283 1n this case the two hydrophobic pockets
are occupied by a tryptophan and a leucine, respectivelis i$the first complex structure of
GABARAP with a native ligand.

1 GABARAP Displays Two Hydrophobic Pockets

The role of tryptophan as a key residue for ligand bindingh wbiquitin-like modifier
GABARAP was investigated. Two tryptophan binding hydropicgpatches were identi-
fied on the conserved face of the GABARAP structure by NMR 8pscopy and molec-
ular docking (Figure 1). GABARAP binding of indole and indallerivatives including
the free amino acid tryptophan was quantified. The two tnypém binding sites can be
clearly distinguished by mapping the NMR-derived residpec#fic apparent dissociation
constant, K, onto the three-dimensional structure of GABARAP. The dgital relevance
of tryptophan binding pockets of GABARAP is supported by ghty conserved trypto-
phan residue in the GABARAP binding region of calreticu€tathrin heavy chain, and the
gammaz2 subunit of the GABAreceptor. Replacement of tryptophan by alanine abolishes
ligand binding to GABARAP.

2 Co-Crystallization of GABARAP with Ligand Peptides

Next we have determined the X-ray structure of the solubienfof human GABARAP
complexed with a high-affinity synthetic peptide at A 3esolution (Figure 2). The data
shed light on the probable binding modes of key interacteminers, including the GABA
receptor and the cysteine protease Atg4. The resulting l@devide a structural back-
ground for further investigation of the unique biologicabperties of GABARAR.
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Figure 1. GABARAP in ribbon and surface representation. wdole molecules are placed in the hydrophobic
pockets HP1 and HP2, respectively.

Figure 2. Overview of the GABARAP-K1 complex. GABARAP is defed as a surface representation. The
peptide is shown in stick mode in dark gray. Both tryptophamesdeeply buried in the hydrophobic pockets.

Recently we have succeeded in co—crystallizinog GABARAP afgment of calreti-
culin and have determined the X-ray structure atR/@solution (Figure 3). The results
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Figure 3. Overview of the GABARAP-CRT(178-188) complex. BARAP is depicted as a surface representa-
tion. The peptide is shown in stick mode in dark gray. Thetophan and leucine residues are buried in HP1 and
HP2, respectively.

improve our understanding of the GABARAP-calreticulirgirgction and serve as a model
for the interaction with clathrin heavy chain and NSF. Thews model of the complex
with full length calreticulin provides a starting point ftire investigation of multimeric
complexes with additional binding partners of GABARAP.
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We analyze the freezing and collapse transition of a simpléetfor flexible polymer chains on
simple cubic and face-centered cubic lattices by meanspifisticated chain-growth methods.
In contrast to bond-fluctuation polymer models in certainapeeter ranges, where these two
conformational transitions were found to merge in the thatymamic limit, we conclude from
our results that the two transitions remain well-separatetie limit of infinite chain lengths.
The reason for this qualitatively distinct behavior is presibly due to the ultrashort attractive
interaction range in the lattice models considered here.

1 Introduction

It is well known that single homopolymer chains undergo aditrral coil-globule transi-
tion at the so-calle®-point. Much theoretical, experimental, and algorithmirkvwas,
and still is, spent to localize that point for various homlypter models. In principle,
there is no longer any difficulty to investigate lattice misdgp to very long chain lengths.
A well working technique to deal with the problem is the (nF algorithm?:2

Since a relatively short time, thanks to generalized-emdewersions of PERM; it is
also possible to investigate the temperature range fandble©-temperature, where an-
other transition called ground-state—globule, liquidies(rystallization) or freezing tran-
sition can occuf:® A recent study of the bond-fluctuation model with respecthiese
different transitions for example showed, that the crjig&tion and the coil-globule tran-
sitions may, but generally do not, coincide in the thermadyit limit, depending on the
interaction rangé.

In this work, motivated by above mentioned studies, we vapart results for the
structural transitions of Interacting Self-Avoiding WaldSAW) on the simple cubic (sc)
and face-centered cubic (fcc) lattice, the simplest manteléxible, interacting polymers.

2 Model and Methods

In the ISAW model, a local attractive interaction between+hbonded nearest neighbors
is assumed. The total energy of an ISAW is giveniy= —n, wheren is the number
of such contacts. To simulate the model, we use the nPERMitidgofor the study of
the ©-transition of very long chains and a generalized-enserigon for the simulation
of the low-temperature behavior of short polymers. The PER&thod is a chain-growth
algorithm based on the Rosenbluth metAddincludes population control by pruning or
enriching populations during the growth, depending onshotd weights:*
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3 Results and Discussion

For investigating structural transitions of the polymerdal we calculate the specific heat
and analyze its peak structure. It is expected that evendigngers of finite length, peaks
of fluctuating quantities signalize conformational adyjivi

Figure 1 (left) shows specific-heat peaks of polymers on th&atsice with lengths
8 < N < 125. We see that there is no uniform scaling behavior of the peakis was
found for the bond-fluctuation mod&lA first view does not show any regularity at all
regarding the low-temperature peaks. However, the depeeds the peak temperatures
on the chain length exhibits more systematics, see Figghtjri
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Figure 1. Left: Map of specific-heat maxima for several chaimgths. Circles ®) symbolize the peaks (if
any) identified as signals of the colIapSE;@ax > 1). The low-temperature peaks-) belong to the excita-
tion/freezing transitions’l(cwx < 0.8). Right: Collapse and excitation/freezing peak tempeestof the same
specific-heat peaks.

The freezing-transition temperatures show a sawtoothdihavior which is due to opti-
mal monomer alignment to the underlying lattice. At the letygeak temperatures, we find
chains with very compact ground states which are arrangedtass or compact cuboids,
respectively, e.g., foaN = 27, 36, 48, etc. The corresponding chains have an energy gap of
AFE = 2 between the ground state and the first excited state. Foc la#ise, this can eas-
ily be explained. The first excited state can be construcyeimoving a monomer from
the corner of the compact state (breaking 3 contacts) amihglé somewhere at the sur-
face (gaining 1 contact). All these chains have a very praned freezing-transition peak
(not shown). On the other hand, at the other side of the “tetith respective chains with
one more monomer reside. Here, the formerly pronounceddomperature peak becomes
very weak.

Let us briefly say some words on tiepoint. Despite of very precise measurements,
the nature of this transition is not yet completely underdtoconsidering for example
predicted logarithmic correctiofsvhich could not be resolved so far in numerical data.
Figure 2 shows an illustrating picture of the studied olgdteft) and data of transition
temperatures for different chain lengths as well as fits éodidta (right). There are several
approaches to extrapoldfe by fitting 7. (). We used here the mean-field like fit

1 1 - aq a9 (1)
T.(N) Te N N’
which was found to be consistent with numerical data obthingrandcanonical analyses
of lattice homopolymers and the bond-fluctuation mddel.
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Figure 2. Left: Two typical conformations of a 4096mer on dattice at different temperature€s < To;
E = —=5367 andT > Tg; £ = —1054. Right: Inverse collapse temperatures for several chaigties on sc
(IV < 32000) and fcc lattices IV < 4 000). Drawn lines are fits according to Eq. (1). Error bars arenshdut
may not be visible.

Optimal fit parameters using the data in the inten2l8 < N < 32000 (sc) and
100 < N <4000 (fcc) were found to b&g° = 3.72(1), a1 ~ 2.5, andas ~ 8.0 (sc), and
Tke =8.18(2), a; ~ 1.0, andas ~ 5.5 (fcc). This agrees very well with data published
so far> ! but does unfortunately not solve the problem of correctams either. A very
detailed analysis including different fit ansatze and pei@r estimates can be found in
Ref. 6.

To summarize, there exists a clear low-temperature frgetriansition below the
©-point, which is strongly influenced by lattice restrictsonit is shifted with increasing
chain length to lower temperaturek{r=(/N) ~ 0.4) and jumps at chains with very com-
pact ground states back to a valu€l@fnx(N) ~ 0.6. The temperature interval, in which
the freezing peaks fluctuate, does not change when varyinghtin length, whereas the
finite-length©-temperature does.
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The Na/K+t-ATPase pumps ions across the membrane which is necessamafotaining
the membrane potential. The energy for this active ion parisis provided by binding and
hydrolysis of ATP and has to be transferred from the cyteplasucleotide binding site to
the transmembrane domain of ion transport. This transpate @an also be induced experi-
mentally by applying voltage jumps across the membrane. iivealated the applied electric
field by an ionic capacitor and studied the impact on thé Ma"-ATPase by a combination of
multiconformation continuum electrostatics (MCCE) andewalar dynamics (MD). Our cal-
culations show a selective activation of the helices M5, Mé &8 by the electric field. Those
helices are likely to act as energy transduction elements.

1 Introduction

The Na"/KT-ATPase is an integral membrane ion pump belonging to thergpily of P-
type ATPases. All members of the subfamily (P-type ATPaleshhre common structural
similarities. These proteins consist of three cytoplasdumains fucleotide binding-,
actuator- angohosphorylation domain) and a transmembrane domain (wétfothbinding
sites) which is composed of 18helices (M1-M10). The cytoplasmic domain is connected
to the transmembrane domain by the stalk region (S2-S5)ausecof this structural and
functional similarity, the mechanism of pumping ions asrasmembrane is supposed to
be common for all P-type ATPases and is described by theAbsts scheme (with two
main conformational states E1 and E2). In the reaction ayfdlee Na" /K *-ATPase, three
Nat-ions are pumped out and two'kions are pumped into the cell. Thus the™i™-
ATPase is electrogenic which is essential for maintainfirggrhembrane potential. Cations
have to be transported actively against a gradient. Thexefoergy is needed which is
provided at the nucleotide binding site by binding and hjytsis of ATP. This energy has
to be transferred to the transmembrane ion binding sitestwduie located approx. 58
apart. Experiments show that the transport cycle can ngtlminduced by ATP but also
by an electric field that is applied to the membran@hese voltage-clamp fluorometry
experiments indicate an important role of the highly comsdrtransmembrane helix M5
and M6 for the energy transduction mechanism of theé & -ATPase. To study the
energy transduction theoretically, a combination of etestatic calculations (MCCE) and
molecular dynamic simulations (MD) is used to evaluate thgact of a simulated electric
field on the N&/K*-ATPase.

2 Methods

Multiconformation continuum electrostatic (MCCE) calatibns simulate simultaneously
the residue ionization and side chain rotarAérsThe electric field that is applied to the
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transmembrane region of the N&K*-ATPase (pdb-id: 3B8E ; resolution: 3k ; E2
enzyme staté)was simulated by an "ionic capacitor”. Therefore ions wdezed above
and below the protein and parameterized in MCCE. The atonoidainof the Na /K-
ATPase was embedded in a POPC (palmitoyl oleoyl phospHeltidine) membrane and
the gap between the protein and the membrane was closed mitkeaular dynamic (MD)
simulation (NAMDY. The exact position of the capacitor and the number of icatswiere
inserted (strength of the applied electric field) were @t study the influence of the
simulation setup. To include conformational dynamics armegin backbone flexibility,
structural snapshots of the MD simulations have been chasémput coordinates for the
electrostatic calculations. The impact of the electricdfi@h the helices M1-M10 and the
stalk region S2-S5 was observed by the number of residuebgbierthat change their
conformer. Conformer changes consider both, rotamer @saigd changes of the residue
ionization.

3 Results and Conclusions

Number of Residues per Helix

Helix | M1 | M2+S2 | M3+S3 | M4+S4 | M5+S5 | M6 | M7 | M8 | M9 | M10
21 33 26 36 39 21 | 23 | 20 | 19| 21
Number of Conformer Changes for Selected MD Snapshots
time | M1 | M2+S2 | M3+S3 | M4+S4 | M5+S5| M6 | M7 | M8 | M9 | M10
[ps]

0 2 6 5 8 14 6 3 6 2 3
125 | 2 10 5 8 11 6 2 8 1 4
250 | 1 5 3 8 13 6 4 7 1 5
500 | 1 7 4 12 12 6 2 6 3 5
750 | 1 6 2 8 11 7 2 7 1 5

1000 | 3 7 4 8 12 6 2 8 3 5

Averaged Residue Changes per Helix [%0]
| 79| 207 | 147 | 222 | 31.2 [29.4]109]333]88] 214

Table 1. Impact of an electric field on the transmembranecé®lof the Na /KT -ATPase including the stalk
region.

Table 1 shows that the helices M2, M4, M5, M6 and M8 and M10saespntensely
with residues conformer changes to an applied electric. fiehe helices M5, M6 and M8
change approximately one-third of their conformers. Initld, the conformer changes of
these helices are evenly distributed across the complétedmel not only at the helix ends
close to the capacitor as it is the case for the helices M2, M¥N10. The impact of the
simulation setup was tested by varying the geometry of thie icapacitor and the strength
of the applied electric field. Independent of the setup, thmlper of conformers that
change remained high and nearly the same for the helices M&id M8 as compared to
the other transmembrane helices. The strength of theieléetd has to be simulated much
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higher than the fields that were applied in the experimemalsin order to obtain any
effects on conformer occupancy. This can be explained birttieed backbone flexibility

in our calculations. However, a qualitative analysis isfiele by this simulation approach.
The different structural MD snapshots showed only a smai&tian in conformer changes
as compared to the crystal structure coordinates. In pdatiche changes on the helices
M5, M6 and M8 remained high for the different structural sstagts. Thus these helices
are selectively activated by the electric field supportimg ¢éxperimental hypothesis that
these helices are likely to act as energy transduction elesnerhe contribution of the
helices M5 and M8 to the energy transduction mechanism calslilbe concluded from
our previous electrostatic calculations with modeledddtres of the Na/K -ATPase and
with the C&+-ATPase, another member of the P-type ATPase fdimfyrther support is
provided by calculations on a mutant of the'™ME T -ATPase. This mutant (N776D) shows
no voltage dependence in experiméntdat could be confirmed by our calculations. The
number of conformer changes due to the applied electric iBeddso reduced for M5, M6
and M8. The number of conformer changes is reduced to twd-far the helix M6 and
even to the half for the helices M5 and M8.
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Introducing backbone hydrogen bond potentials that aterbetween attraction and repulsion,
forcing a fast reordering, leads to fastsilico folding of small proteins. However thermody-
namic properties cannot be extracted from these simukatod they are not suitable for use in
generalized ensemble methods. In this paper we addresevthopgment of a hydrogen bond
potential that is energy conserving and time-reversibléhaut loss of efficiency.

1 Introduction

Computational modeling at atomic resolution has the p@tktatreveal properties that are
inaccessible to experiments, but its application is ambatfers limited by a sampling
problem. This is a consequence of the rugged free-energgtape observed in detailed
protein models.

Hydrogen bonds make an important contribution to the freergy landscape of a pro-
tein and are required to compensate the free-energy cosirging (partially) charged
groupst Although there is no net free energy gain upon hydrogen beoddering, the
associated barrier of 2-BT'? contributes strongly to the ruggedness of the free-energy
landscape.

In a previous study we showed that the sampling problem caacheed by facilitating
barrier crossings, in particular those associated withrdgyein bond formation/breaking.
We introduced hydrogen bond potentials that alternate dtvattraction and repulsion
(AHBP) forcing a fast reordering of the backbone hydrogendsowhich leads to fast in
silico folding of small proteins.

However simulations with these alternating hydrogen bootkmtials are not time-
reversible and they do not conserve energy. Hence thernamaigrproperties cannot be
extracted from these simulations and they are not suitaslede in generalized ensem-
ble methods. In this paper we address the development of ttnaoos hydrogen bond
potential that is energy conserving and time-reversibithout loss of efficiency.

2 Continuous Hydrogen Bond Potential

There are a number of requirements that must be satisfiee inew hydrogen bond po-
tential. Firstly, in an md simulation the energy needs todieserved in order to acquire a
proper sampling of the free-energy landscape. For theithail hydrogen bond potentials
this can easily be satisfied by expressing the distanceatten function/,; and the angle
interaction function/y as a cubic spline.
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1, -value

Figure 1. The interaction function I, (eq 2) shown for the oxygen position in a plane around the N-H
atoms displayed in topview (left) and sideview (right).

Secondly, the energy and the derived forces of the hydroged potential must result
in efficient hydrogen bond reordering. Because reorderiafniy requires a change in
distance a larger weight for the distance relative to thdeaimgeraction is desired. Within
the observation that the angle potential only has meanisga@t separation of donor and
acceptor the range of the distance and angle function iosedt— 0.0 and1.0 — 0.6,
respectively.

Finally, a hydrogen bond is very selective, usually havintymne partner (with oc-
casionally a second), restricting the number of potengalsdonor (acceptor) to one. To
avoid the need for native state input the partner must betseldased on the conforma-
tion in the simulation. Therefore we choose for every doracéptor) the partner with
the highest value of the hydrogen bond interaction funcfipnevery time step. In this
way the energy is conserved because a switch of partneispéee when the energies are
equal. Since the hydrogen bond potential is an interactiantfon also linear momentum
is conserved and only angular momentum is not conserved.

The following continuous hydrogen bond poteniigl, (CHBP) is consistent with these
requirements.

A,D
Vio(r) = fe- Z max{ Ins(Tk,71) hiea,n (1)
k
Inp(rie, 1) = La(re, 1) - Lo (e, 1) 2)
1 Tkl < Tmin
Y3 g )2
Id(rkvrl) = (iE:Z;__T;::ZL))s + (?,’;’;;_,f:;)y + 1 Tmin < TR < Tmag (3)
0 Tmaz < Tk
1 le < emzn

o0, 00) = § 0.4+ [Z0- ol SOt} 4 < < b (8
Gmaw < ekl
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Figure 2. Effectiveness of the hydrogen bond potentialsa) The auto correlation function shows the hydrogen
bond lifetime for the different simulations. b) The secanydstructure formed in a small simulation with the new
continuous hydrogen bonds potentials.

with V},; the total potential energy of the hydrogen bond potentjalghe force constant,
r the distance between the donor and acceptidhe N-H-O angle an& and! indices of
the backbone donorX) and acceptor4) atoms.

The parameters for the hydrogen bond potentials were chiosdfect hydrogen bonds
that are (very) weak for minimum interference to the systacta leave potentially native
hydrogen bonds undisturbed. The minimum and maximum cdisfances were 0.35 nm
and 0.40 nm between the donor and acceptor with a force ¢urafta0 for the repulsive
stage and 0.23 and 0.40 nm between the hydrogen and accéptarfarce constant of -50
for the attractive stage. In both stages the mimimum and maxi N-H-O angle cutoff
were 100 and 150.

3 Validation

To validate the new hydrogen bond potential we will show thatrequirements 1) energy
conservation, 2) selective and 3) effective are satisfiederdfore we performed NVE
simulations with an attractive, with a repulsive and withtihe hydrogen bond potentials.
For these simulations we found a fluctuation3of, 4.2 and1.8 kJ mol~*, respectively,
around the average total energ91 - 103 kJmol~!. This is £2% of the kinetic and
potential energy fluctuation. For all simulations the drits—5.7 k.J mol ! ps~—1. Within
the accuracy of the md algorithm the potentials are thusgynawnserving. The energy
conservation also shows that a switch of hydrogen bond @axtitroducing selectivity,
is allowed.

To test the effectiveness of the new hydrogen bond poteméglerformed NVT sim-
ulations where the hydrogen bond potentials are changes pgdn the order attractive-
nopotential-repulsive-nopotential-attractive-etc.effectiveness of these potentials can
be expressed as the speed of hydrogen bond reordering, déypeEnds on the hydrogen
bond lifetime and the average number of hydrogen bonds. yteohgen bond lifetime is
related to the intramolecular hydrogen bond autocor@idfiinction, where a faster de-
crease in the autocorrelation functions indicates a shiifiééme. From fig. 2a this leads
to the following relation between the hydrogen bond lifedim, of the different simu-
lations: mhp. caBP < Tho,AHBP < Thb,standard- 1h€ average number of intramolecular
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hydrogen bonds is 4.1, 4.7 and 3.9 for the CHBP, AHBP and srahsimulation, re-
spectively. These results indicate an even faster hydrbged reordering with the new
hydrogen bond potentials.

The effectiveness can also be expressed as the speed ohfpdifferent secondary
structure elements. In fig. 2b the occurrencewdielix and3-sheet during a simulation
with CHBP changing between attrative and repulsive is sho@iearly both secondary
structure elements are easily formed with this potential.

4  Qutlook

In this paper we have shown that an energy conserving hydroged potential can result
in quick sampling of the conformational space of a polyaianvhen the CHBP is changed
between attractive and repulsive. However thermodynarojogrties can only be extracted
from these simulations if this change is Boltzmann weight&@bnsequently a method
that changes the potentials while maintaining detailedrz, like for example replica
exchange, can reveal thermodynamic properties (J. Vrewti®aWolf, in preparation).

5 Simulation Details

All simulations were performed using the GROMAESoftware package version 3.3.1
extended with the hydrogen bond potentials using the GROMO®al forcefield. A
timestep of 2 fs for NVT and 0.1 fs for NVE was used, with all dsrconstrained using
the LINCS algorithm. Van der Waals interactions were igdaretside a cut-off of 1.2 nm.
Electrostatic interactions were treated with the PME methpplying a real-space cutoff
of 0.9 nm. In the NVT simulation the system temperature wagtam to a Berendsen
thermostat.

The starting structure of the simulations is a random cebapcoil poly alanine of
16 residues, dissolved in a box of approximately 2000 SP@mtatobtain a density of
0.97 kg/l. Initial velocities were generated randomly td gesystem at 300 K, which
was simulated under NVT conditions for 1 ns to equilibrateobe production runs were
performed.
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EcoRV is a restriction enzyme produced by Escherichia @ali testroys invading DNA by
cleaving it at a GATATC sequence, as a defence mechanisnmsigaral attacks. EcoRV
sharply bends its specific DNA site, by approximately 5directly at the center TA step, help-
ing to facilitate correct orientation of the scissile phloaie, the catalytic site of the enzyme and
divalent metal ions. We are investigating the physicalins@f sequence specificity in ECORV
endonuclease. Computer simulations are performed of freeeDNA sequences in aqueous
solution, starting from a B-form, in order to understand twatvextent the bending is intrinsic to
the DNA itself. The results contribute to understanding wie/cognate sequence is recognized
specifically by the EcoRV restriction enzyme.

1 Introduction

One of the central issues of modern molecular biology angHyisics is to understand
the interactions stabilizing complexes in solution, andipalarly how a small sequence
change can lead to a significant difference in affinity. RndBNA interactions provide
an important class of biomolecular complexes for studyinchsissues. Molecular dy-
namics (MD) simulation techniques, with which individuateractions and dynamics at
the atomic level can be probed explicitly, provide a meamsglementary to experimental
techniques, of determining details of molecular strucané interactiorf. Restriction en-
donucleases provide interesting model systems for thesiigation of sequence-specific
protein/DNA interactions. The ability of bacterial cells tesist invading foreign DNA
is wholly dependent upon the extraordinarily high fidelifytlois recognition process, in
which target sites are selected from an enormous molar exdestructurally similar non-
specific DNAL 2 We are investigating the origins of sequence specificitydoR/ endonu-
clease in order to elucidate how molecular interactionsiaddced fit operate to ensure
selectivity for blunt-ended cleavage at the center stepAFTAZC. EcoRV sharply bends
its specific DNA site by approximately 30directly at the center TA step, helping to fa-
cilitate proper juxtaposition of the scissile phosphédte,¢atalytic site of the enzyme and
divalent metal iong.To examine the origins of ECORV sequence discriminatiorgtaited
kinetic and crystallographic study has been performedeirteraction of ECORV with the
cognate sequence GATATC (TA), and two non-cognate sequ&#ATTC (AT) which is
the cognate sequence recognized by an other restrictigmmenzcoRlI, and it's mutant,
GAAUTC (AU).?2 Examination of DNA binding and bending by equilibrium andged-
flow fluorescence quenching and fluorescence resonanceydragfer (FRET) methods
demonstrate that the capacity of ECORV to bend the AT sequsite is severely limited,
and full bending of AU sequence is achieved at only a threlefetiuced rate compared
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with the cognate complex (TA). The above results demoresttett the DNA sequences,
although swapping only 2 nucleotides, induce a change ob#meling-cleavage mecha-
nism. This change does not imply large conformation admpistof the protein rather
small perturbations leading to the rearrangement of thaleiit metal ion binding sites.
In the present work, the structures of the free DNA sequeircester are probed. We
investigate how the swap of the center base pair leads torayehaf the behaviour of the
free DNA in water. For this purpose, we performed MD simwlas of the three DNA

sequences; TA, AT and AU free in agqueous solution.

2 Materials and Methods

Three 14-bp B-DNA molecules were examined with differenntca nucleotides
but the same flanking sequences and same nucleotide corfi@rsefuence: 5'-
dAGAAGATATCTTGA-3', ATsequence: 5-dAGAAGAT TCTTGA-3’, AU-sequence:
5-dAGAAGAAUTCTTGA-3). Standard B-DNA starting structures were geted
using the program NAB The setup of the system was performed with the program
CHARMM?® and the charmm27 force fiéfi Each system was neutralized by adding
28 Na' counterions, and an excess of Nand CI” ions were added, corresponding to
a physiological concentration of 150mN NaCl. The system sadgated with a buffer of
explicit water extending of 18.in each direction in a cubic box (xziOyz?OA, z:70,&).
Minimizations, heating, equilibration and production sumere performed with the pro-
gram NAMD*. For each of the three systems 20ns MD was performed in a N&dhanie

at 1-atm pressure and 300K. Structural analysis and calenlaf the free energy were
performed using standard programs; 30NGromac$ tools and home made scripts.

3 Results and Discussion

Differences of two nucleotides at the center steps have bbewn to be sufficient to
hinder full bending and thus cleavage of the DNA in complexhwicoRV restriction
endonucleasé.We examine here whether or not differences can be seen hetivese
three free DNA molecules in water. We analyzed the moleauigin of bending in terms
of local helical parameters of the three DNA structuresatt#mter step calculated with the
program 3DNA. The parameters monitored include the local roll angle aeddcal tilt

at the center step. The roll angle measures rotation of ageasplane about its long axis.
This motion creates an angle, narrowing toward the majomgrdor positive roll, between
two otherwise parallel adjacent base pairs. Tilt arisesifrotation about a base pair short
axis and is generally less than half as large as roll. We tatted the free energy profile
at the center step of each DNA sequence as a function of theer@drameters. Table 1
shows some local helical parameters for the DNA moleculgstallized in complex with
the protein EcoRV, and in the DNA during the MD simulation.eTthree DNA molecules
appear to have different properties for the roll angle attger step when it is complexed
to EcoRV or when it is free in agueous solution. Indeed thenaetg free TA molecule
has a minimum free energy for an angle of H00.98, whereas the free AT molecule has
an angle of 8 +£0.65° and the free AU molecule is about 3:0.74. Within 5 kJ/mol
of the minimum free energy the roll angle for the TA sequera®es from -10 to +25
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whereas that for AT reaches only -5 to £15The AU sequence explores a wider range
than AT but less than the TA sequence, varying between -1Q® within 5kJ/mol of the
minimum. In contrast to the roll angle, the tilt angle belwivea similar way for the 3 DNA
molecules. The atomic fluctuations (Figure 1) show that tB&2 molecules fluctuate in

Parameter TA AT® AU“ TA? AT® AU?
Roll (deg.) 499 28.8 532 160.98 540.65 34+0.74
Tilt (deg.) -3.24 0.87 4.01 0.380.08 0.63+0.05 1.64+0.09

“ DNA crystallographic structures. The respective pdb cateslSX8, 2BOD, 2BOE. The values
are taken from Hillet.

® B-DNA structures simulated in water. The values corresptoritie angle with the minimum free
energy calculated from the 20ns MD simulation.

Table 1. Conformational diffusion constants and corredpanrelaxation times.

the same regions, mainly at the 2 termini (atoms 1 to 40; 4G0@and 850 to 890 around
0.6 nm for TA sequence, 0.3 nm for AT sequence and 0.8 for Auisece). The rest of
the atoms fluctuate around 0.15 nm, and a periodicity can bereed. The higher values
correspond to the fluctuation of the atoms from the backbsngar and phosphate), and
the lower values to the base pairs. The three structures/eehastly in a very similar

— TAsequence
0.8 — AT sequence |
— AU sequence

. | . | . | .
0 200 400 600 800
atoms

Figure 1. Atomic fluctuation of the 3 DNA sequences during Mig simulation. The first strand is from the
atom 1 to 448; the second is from 449 to 891.

way. However the roll angle at the center step shows a norlggiieg difference.

4 Conclusion

The three DNA molecules simulated here differ by only 1 or 2laatides at the central
step. This small difference is sufficient for the ECoRV resiwn endonuclease to recognize
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only one sequence specifically. The simulations show tieadtbmic fluctuations and some
local helical parameters are very similar for the three sagas, even at the central step.
However, the TA sequence appears to be the most flexible dhtbe, as can be seen by
the broader range of roll angles sampled as compared tohiee stquences during the 20
ns of the simulations. This finding suggests that recogmiifdhe sequence specifically by
the EcoRV restriction enzyme is due in part to inherent $tmat tendencies of the cognate
DNA sequence.
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New Force Replica Exchange Method and Mechanical Unfoldihg
Proteins

Coffee break
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16:15-17:00

17:00-17:20

17:20-17:40

17:40-18:00

18:00
20:30

Wei Yang (Florida State University, Tallalesesd-L, USA):
Advancing Drug and Protein Binding Affinity Predicationaveener-
alized Ensemble Based Methods

Iris Antes (Max-Planck-Institut fur Infortilg Saarbricken, Ger-
many):
Protein-ligand Docking Including Protein Flexibility — Asierarchical
Approach

Slawomir Orlowski (Nicolaus Copernicus Umsity, Torun, Poland):
Computer Modeling of Small Ligands Diffusion in Drosophila
Melanogaster Hemoglobin

Bogdan Lesyng (University of Warsaw, FaculyPhysics, Warsaw,
Poland):
Protein-ligand Docking with a Two-scale Receptor Dynanacsl a
QM/MM Interaction Potential

Welcome Reception and Poster Session

Bus to Hotels in Jilich

Tuesday 20.05.2008

08:10

Pickup at Hotels in Julich

Morning Session (Chair: Olav Zimmermann)

09:00-09:45

09:45-10:05

10:05-10:25

10:25-11:00
11:00-11:45

11:45-12:05

12:05-12:25

12:25-12:40
12:40-14:00

Andrzej Kolinski (University of Warsaw, Wans@oland):
Multiscale Modeling of Protein and Protein Assemblies

Shura Hayryan (Academis Sinica, Taipei, Tai(ROC)):
Some Aspects of RNA Folding Studied by Lattice Simulations

Kay Hamacher (TU Darmstadt, Darmstadt, Geyjnan
Coarse-Grained Molecular Models for High-Throughput andItM
Scale Functional Investigations

Coffee break

Ron Elber (University of Texas at Austin, AostiSA):

Atomically Detailed Simulations of Kinetics in Moleculaidphysics

by Milestoning
Anton Feenstra (Free University Amsterdamstendam, The Nether-
lands):
Predicting Protein Interactions from Functional Spedificising Multi-
Relief and Multi-Harmony
Sebastian Kmiecik (Selvita, Krakow, Poland):
Designing an Automatic Pipeline for Protein Structure Riah
Group-Photo
Lunch
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Afternoon Session (Chair: Walter Nadler)

14:00-14:45 Wilfred F. van Gunsteren (ETH Zirich, Zuriuwitzerland):
Computer Simulation of Biomolecular Systems: Where Do én&?

14:45-15:05 Karine Voltz (German Cancer Research Centdgtberg, Germany):
A Coarse-grained Model for the Nucleosome

15:05-15:25 Maciej Dlugosz (University of Warsaw, WarsBw|and):
Interactions of Aminoglycosidic Antibiotics with the 30Sul8unit -
Brownian Dynamics Study

15:25-15:45 Junalyn Navarra-Madsen (TWU, Denton, USA):
Coloring the Mu Transpososome

15:45-16:15 Coffee break

16:15-17:00 Roland Netz (Technical University Munich, Mtien, Germany):
Peptide Adhesion and Friction: Theoretical Approaches

17:00-17:20 Rainer Bockmann (Saarland University, Séi@ken, Germany):
Kinetics, Statistics, and Energetics of Lipid MembranecElgporation
Studied by Molecular Dynamics Simulations

17:20-17:40 Borries Demeler (The University of Texas, le&cience Center at
San Antonio, San Antonio, Texas, USA):
Modeling Conformational and Molecular Weight Heterogénevith
Analytical Ultracentrifugation Experiments (AUC)

17:40-18:00 Wolfgang Fischer (National Yang-Ming UningrsTaipei, Taiwan):
Short Membrane Proteins from Viruses: Channel-pore Donédlis

18:15 Bus to Castle Obbendorf (Hambach) for Dinner

18:30 Dinner (Sponsored by IBM Germany)
Greetings by Dr. Sebastian Schmidt, Divisional DirectoRefsearch
Centre Julich

22:00 Bus to Hotels in Jilich

Wednesday 21.05.2008

8:10 Pickup at Hotels in Julich
Morning Session (Chair: Sandipan Mohanty)

09:00-09:45 Michael Feig (Michigan State University, Hamhsing, USA):
Simulating Biomolecules in Cellular Environments
09:45-10:05 Giovanni La Penna (National Research CourBgisto Fiorentino,
Italy):
Modelling the Free Energy of Polypeptides in Different Eoniments
10:05-10:25 Joachim Dzubiella (Technical University MetmiGarching, Germany):
Insights from Atomistic Computer Simulations of HaloptiRroteins
10:25-11:00 Coffee break
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11:00-11:45

11:45-12:05

12:05-12:25

12:25-14:00

Philippe Derreumaux (CNRS and University afd?3, Paris, France):
Simulating the Early Steps of Amyloid Fibril Formation antsBssem-
bly

Alfonso De Simone (University of Cambridgen®aidge, UK):
Probing the Prion Hydration by Molecular Dynamics Simuas:
From Native via Misfolded to Amyloid Conformations

Volker Knecht (Max Planck Institute of Collsidnd Interfaces, Pots-
dam, Germany):

Folding and Aggregation of Model Amyloid Peptides in ExfiliSol-
vent and at an Interface

Lunch

Afternoon Session (Chair: Ulrich H. E. Hansmann)

14:00-14:20

14:20-14:40

14:40-15:25

15:25-15:30
afterwards

21:00

Horacio Sanchez (Forschungszentrum KasesrutEggenstein-
Leopoldshafen, Germany):
High Throughput in-silico Screening against Flexible Biot

Michal Wojciechowski (Polish Academy of Scies, Warsaw, Poland):
Effects of Confinement on Protein Folding

Dietmar Schomburg (Technische UniversiteduBschweig, Braun-
schweig, Germany):
Bioinformatics, Metabolomics, and Systems Biology

Concluding Remarks (Ulrich H. E. Hansmann,JGIEB)

Bus to Cologne
Social Event: Visit of a Traditional Brewhouse (drinks armbd on
one’s own expense)

Bus to Julich
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NIC Series John von Neumann Institute for Computing

Already published:

Modern Methods and Algorithms of Quantum Chemistry -
Proceedings

Johannes Grotendorst (Editor)

Winter School, 21 - 25 February 2000, Forschungszentrum Jilich
NIC Series Volume 1

ISBN 3-00-005618-1, February 2000, 562 pages

out of print

Modern Methods and Algorithms of Quantum Chemistry -

Poster Presentations

Johannes Grotendorst (Editor)

Winter School, 21 - 25 February 2000, Forschungszentrum Jilich
NIC Series Volume 2

ISBN 3-00-005746-3, February 2000, 77 pages

out of print

Modern Methods and Algorithms of Quantum Chemistry -
Proceedings, Second Edition

Johannes Grotendorst (Editor)

Winter School, 21 - 25 February 2000, Forschungszentrum Jilich
NIC Series Volume 3

ISBN 3-00-005834-6, December 2000, 638 pages

out of print

Nichtlineare Analyse raum-zeitlicher Aspekte der
hirnelektrischen Aktivit  at von Epilepsiepatienten
Jochen Arnold

NIC Series Volume 4

ISBN 3-00-006221-1, September 2000, 120 pages

Elektron-Elektron-Wechselwirkung in Halbleitern:

Von hochkorrelierten koh  &renten Anfangszust &anden
zu inkoh arentem Transport

Reinhold Lovenich

NIC Series Volume 5

ISBN 3-00-006329-3, August 2000, 146 pages

Erkennung von Nichtlinearit &ten und
wechselseitigen Abh &ngigkeiten in Zeitreihen
Andreas Schmitz

NIC Series Volume 6

ISBN 3-00-007871-1, May 2001, 142 pages



Multiparadigm Programming with Object-Oriented Language S-
Proceedings

Kei Davis, Yannis Smaragdakis, Jorg Striegnitz (Editors)

Workshop MPOOL, 18 May 2001, Budapest

NIC Series Volume 7

ISBN 3-00-007968-8, June 2001, 160 pages

Europhysics Conference on Computational Physics -
Book of Abstracts

Friedel Hossfeld, Kurt Binder (Editors)

Conference, 5 - 8 September 2001, Aachen

NIC Series Volume 8

ISBN 3-00-008236-0, September 2001, 500 pages

NIC Symposium 2001 - Proceedings

Horst Rollnik, Dietrich Wolf (Editors)

Symposium, 5 - 6 December 2001, Forschungszentrum Julich
NIC Series Volume 9

ISBN 3-00-009055-X, May 2002, 514 pages

Quantum Simulations of Complex Many-Body Systems:

From Theory to Algorithms - Lecture Notes

Johannes Grotendorst, Dominik Marx, Alejandro Muramatsu (Editors)
Winter School, 25 February - 1 March 2002, Rolduc Conference Centre,
Kerkrade, The Netherlands

NIC Series Volume 10

ISBN 3-00-009057-6, February 2002, 548 pages

Quantum Simulations of Complex Many-Body Systems:

From Theory to Algorithms- Poster Presentations

Johannes Grotendorst, Dominik Marx, Alejandro Muramatsu (Editors)
Winter School, 25 February - 1 March 2002, Rolduc Conference Centre,
Kerkrade, The Netherlands

NIC Series Volume 11

ISBN 3-00-009058-4, February 2002, 194 pages

Strongly Disordered Quantum Spin Systems in Low Dimensions
Numerical Study of Spin Chains, Spin Ladders and
Two-Dimensional Systems

Yu-cheng Lin

NIC Series Volume 12

ISBN 3-00-009056-8, May 2002, 146 pages

Multiparadigm Programming with Object-Oriented Language S -
Proceedings

Jorg Striegnitz, Kei Davis, Yannis Smaragdakis (Editors)

Workshop MPOOL 2002, 11 June 2002, Malaga

NIC Series Volume 13

ISBN 3-00-009099-1, June 2002, 132 pages



Quantum Simulations of Complex Many-Body Systems:

From Theory to Algorithms - Audio-Visual Lecture Notes

Johannes Grotendorst, Dominik Marx, Alejandro Muramatsu (Editors)
Winter School, 25 February - 1 March 2002, Rolduc Conference Centre,
Kerkrade, The Netherlands

NIC Series Volume 14

ISBN 3-00-010000-8, November 2002, DVD

Numerical Methods for Limit and Shakedown Analysis
Manfred Staat, Michael Heitzer (Eds.)

NIC Series Volume 15

ISBN 3-00-010001-6, February 2003, 306 pages

Design and Evaluation of a Bandwidth Broker that Provides
Network Quality of Service for Grid Applications

Volker Sander

NIC Series Volume 16

ISBN 3-00-010002-4, February 2003, 208 pages

Automatic Performance Analysis on Parallel Computers with
SMP Nodes

Felix Wolf

NIC Series Volume 17

ISBN 3-00-010003-2, February 2003, 168 pages

Haptisches Rendern zum Einpassen von hochaufgel  Gsten
Molekulstrukturdaten in niedrigaufgel  Oste
Elektronenmikroskopie-Dichteverteilungen

Stefan Birmanns

NIC Series Volume 18

ISBN 3-00-010004-0, September 2003, 178 pages

Auswirkungen der Virtualisierung auf den IT-Betrieb

Wolfgang Gurich (Editor)

Gl Conference, 4 - 5 November 2003, Forschungszentrum Jilich
NIC Series Volume 19

ISBN 3-00-009100-9, October 2003, 126 pages

NIC Symposium 2004

Dietrich Wolf, Gernot Miinster, Manfred Kremer (Editors)
Symposium, 17 - 18 February 2004, Forschungszentrum Jilich
NIC Series Volume 20

ISBN 3-00-012372-5, February 2004, 482 pages

Measuring Synchronization in Model Systems and
Electroencephalographic Time Series from Epilepsy Patien ts
Thomas Kreutz

NIC Series Volume 21

ISBN 3-00-012373-3, February 2004, 138 pages



Computational Soft Matter: From Synthetic Polymers to Prot eins -

Poster Abstracts

Norbert Attig, Kurt Binder, Helmut Grubmdller, Kurt Kremer (Editors)

Winter School, 29 February - 6 March 2004, Gustav-Stresemann-Institut Bonn
NIC Series Volume 22

ISBN 3-00-012374-1, February 2004, 120 pages

Computational Soft Matter: From Synthetic Polymers to Prot eins -
Lecture Notes

Norbert Attig, Kurt Binder, Helmut Grubmdller, Kurt Kremer (Editors)

Winter School, 29 February - 6 March 2004, Gustav-Stresemann-Institut Bonn
NIC Series Volume 23

ISBN 3-00-012641-4, February 2004, 440 pages

Synchronization and Interdependence Measures and their Ap plications
to the Electroencephalogram of Epilepsy Patients and Clust ering of Data
Alexander Kraskov

NIC Series Volume 24

ISBN 3-00-013619-3, May 2004, 106 pages

High Performance Computing in Chemistry

Johannes Grotendorst (Editor)

Report of the Joint Research Project:

High Performance Computing in Chemistry - HPC-Chem
NIC Series Volume 25

ISBN 3-00-013618-5, December 2004, 160 pages

Zerlegung von Signalen in unabh  &ngige Komponenten:
Ein informationstheoretischer Zugang

Harald Stogbauer

NIC Series Volume 26

ISBN 3-00-013620-7, April 2005, 110 pages

Multiparadigm Programming 2003

Joint Proceedings of the

3rd International Workshop on Multiparadigm Programming w ith
Object-Oriented Languages (MPOOL03)

and the

1st International Workshop on Declarative Programming in t he
Context of Object-Oriented Languages (PD-COOL03)

Jorg Striegnitz, Kei Davis (Editors)

NIC Series Volume 27

ISBN 3-00-016005-1, July 2005, 300 pages

Integration von Programmiersprachen durch strukturelle T ypanalyse
und partielle Auswertung

Jorg Striegnitz

NIC Series Volume 28

ISBN 3-00-016006-X, May 2005, 306 pages



OpenMolGRID - Open Computing Grid for Molecular Science
and Engineering

Final Report

Mathilde Romberg (Editor)

NIC Series Volume 29

ISBN 3-00-016007-8, July 2005, 86 pages

GALA Grunenthal Applied Life Science Analysis
Achim Kless and Johannes Grotendorst (Editors)
NIC Series Volume 30

ISBN 3-00-017349-8, November 2006, 204 pages

Computational Nanoscience: Do It Yourself!

Lecture Notes

Johannes Grotendorst, Stefan Bliigel, Dominik Marx (Editors)
Winter School, 14. - 22 February 2006, Forschungszentrum Jiilich
NIC Series Volume 31

ISBN 3-00-017350-1, February 2006, 528 pages

NIC Symposium 2006 - Proceedings

G. Munster, D. Wolf, M. Kremer (Editors)

Symposium, 1 - 2 March 2006, Forschungszentrum Jilich
NIC Series Volume 32

ISBN 3-00-017351-X, February 2006, 384 pages

Parallel Computing: Current & Future Issues of High-End
Computing

Proceedings of the International Conference ParCo 2005
G.R. Joubert, W.E. Nagel, F.J. Peters,

O. Plata, P. Tirado, E. Zapata (Editors)

NIC Series Volume 33

ISBN 3-00-017352-8, October 2006, 930 pages

From Computational Biophysics to Systems Biology 2006
Proceedings

U.H.E. Hansmann, J. Meinke, S. Mohanty, O. Zimmermann (Editors)
NIC Series Volume 34

ISBN-10 3-9810843-0-6, ISBN-13 978-3-9810843-0-6,

September 2006, 224 pages

Dreistufig parallele Software zur Parameteroptimierung vo n
Support-Vektor-Maschinen mit kostensensitiven Gutemaf3 en
Tatjana Eitrich

NIC Series Volume 35

ISBN 978-3-9810843-1-3, March 2007, 262 pages



From Computational Biophysics to Systems Biology (CBSB07)
Proceedings

U.H.E. Hansmann, J. Meinke, S. Mohanty, O. Zimmermann (Editors)
NIC Series Volume 36

ISBN 978-3-9810843-2-0, August 2007, 330 pages

Parallel Computing: Architectures, Algorithms and Applic ations -

Book of Abstracts

Book of Abstracts, ParCo 2007 Conference, 4. - 7. September 2007

G.R. Joubert, C. Bischof, F. Peters, T. Lippert, M. Blcker, P. Gibbon, B. Mohr
(Eds.) NIC Series Volume 37

ISBN 978-3-9810843-3-7, August 2007, 216 pages

Parallel Computing: Architectures, Algorithms and Applic ations -
Proceedings

Proceedings, ParCo 2007 Conference, 4. - 7. September 2007

C. Bischof, M. Bicker, P. Gibbon, G.R. Joubert, T. Lippert, B. Mohr, F. Peters
(Eds.) NIC Series Volume 38

ISBN 978-3-9810843-4-4, December 2007, 830 pages

NIC Symposium 2008 - Proceedings

G. Minster, D. Wolf, M. Kremer (Editors)

Symposium, 20 - 21 February 2008, Forschungszentrum Jilich
NIC Series Volume 39

ISBN 978-3-9810843-5-1, February 2008, 380 pages

All volumes are available online at

http:// www.fz-juelich.de/nic-series/.



